台大李宏毅Machine Learning学习笔记(三)——线性回归代码和误差来源

这篇博客介绍了李宏毅教授的线性回归课程中的代码实现,展示了线性回归预测宝可梦CP值的示例,并深入探讨了误差的来源,包括偏差和方差。通过图表解释了偏差衡量模型的精准度,方差则反映了模型的稳定性。文章还提到了过拟合问题以及解决方法,如交叉验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 线性回归的代码实现

这是李弘毅线性回归预测宝可梦cpcpcp值课上给的代码示例,完善了下贴出来,希望对大家有帮助。

x_data = [338., 333., 328., 207., 226., 25., 179., 60., 208., 606.]
y_data = [640., 633., 619., 393., 428., 27., 193., 66., 226., 1591.]
#十个宝可梦的数据,线性模型
#y_data=b+w*x_data
#视频上的代码没有导入相关要用的模块,我在这里加了: 
#import numpy as np 
#import matplotlib.pyplot as plt 
#否则会提示'np'was not deined之类的信息

#arange是nump模块里用于创建数组的函数,第一个数为起点,第二个数为终点,第三个是步长 
#zeros:返回一个用0填充的数组
import numpy as np
import matplotlib.pyplot as plt  #导入相应的模块

x = np.arange(-200, -100, 1)  # bias
y = np.arange(-5, 5, 0.1)  # weight
Z = np.zeros((len(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值