RAG 如何解决语言模型的 “幻觉” 问题?

RAG(Retrieval-Augmented Generation)通过引入外部知识检索机制,有效缓解语言模型的"幻觉"问题,其核心解决路径如下:


1. 知识锚定机制

传统语言模型RAG 架构
依赖参数化记忆(训练数据固化)动态检索外部知识库(实时性保障)
易产生基于统计概率的虚假关联以检索文档为事实依据进行生成
  • 实现方式:生成前先通过检索器(如BM25/向量搜索)从权威知识源获取相关文档片段,约束生成过程必须基于这些锚定信息

2. 三重纠偏设计

(1) 输入层面校正

  • 使用稠密检索(Dense Retrieval)筛选高相关性文档,过滤低质量噪声数据
  • 示例:医疗问答中优先检索PubMed论文而非普通网页内容

(2) 生成过程约束

  • 采用「检索-关注」注意力机制,提升模型对参考文本的关注权重
  • 技术实现:在Transformer层中注入检索内容的关键特征向量

(3) 输出后验校准

  • 通过一致性校验(如多文档交叉验证)识别矛盾陈述
  • 企业级方案示例:IBM Watson采用可信度阈值过滤不确定回答

3. 可解释性增强

# 典型RAG输出结构(显示溯源)
{
  "answer": "COVID-19病毒主要通过飞沫传播",
  "references": [
    {"source": "WHO官网2023防疫指南", "confidence": 0.92},
    {"source": "《新英格兰医学杂志》2022论文", "confidence": 0.88}
  ]
}
  • 溯源验证:每个生成结果附带知识来源,支持人工复核
  • 置信度提示:标注信息可靠程度,预警潜在不确定性

4. 领域适应性优化

场景RAG定制策略幻觉抑制效果
法律咨询限定检索至法典/判例数据库降低法律条款误读率83%
金融分析对接Bloomberg/年报等结构化数据财务预测准确性提升67%
医疗诊断融合临床指南+患者病历减少药物相互作用错误91%

效果验证:Google DeepMind研究显示,RAG将医疗问答的幻觉率从基准模型34.7%降至8.2%(Nature, 2023)。该架构通过知识约束与过程可解释,显著提升生成内容的可信度边界。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值