博文为考研专业课408–数据结构学习笔记记录,如有知识解释错误敬请海涵!!!
数据结构的基本概念
数据
数据是信息的载体
数据元素
数据元素是数据的基本单位,通常作为一个整体进行考虑和处理。一个数据元素可由若干数据项组成,数据项是构成数据元素不可分割的最小单位。
数据对象
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
数据类型
数据类型是一个值的集合和定义在此集合上的一组操作的总和。
数据结构的三要素
1、数据的逻辑结构
集合、线性结构、树形结构、图状结构或网状结构
2、数据的存储结构
(1)顺序存储:把逻辑上相邻的元素存储在物理位置上也相邻的存储单元中。
(2)链式存储:不要求逻辑上相邻的元素在物理位置上也相邻,借助指示元素存储地址的指针来表示元素之间的逻辑关系。
(3)索引存储:在存储元素信息的同时,还建立附加的索引表。索引项的一般形式为(关键字,地址)其优点是检索速度快,缺点是附加的索引表额外占用存储空间。
(4)散列存储:根据元素的关键字直接计算出该元素的存储地址,又称为哈希存储。
3、数据的运算
施加在数据上的运算包括运算的定义和实现。运算的定义是针对逻辑结构的,指出运算的功能,运算的实现是针对存储结构的,指出运算的具体操作步骤。
算法效率的度量
时间复杂度
时间复杂度是用来评价一个算法的时间开销。
算法T(n)可以只考虑阶数高的部分
1)顺序执行的代码只会影响常数项,可以忽略
2)只需挑循环中的一个基本操作分析它的执行次数与n的关系即可
3)如果有多层嵌套循环,只需关注最深层循环执行次数
在分析一个程序的时间复杂性时,有俩个规则:
1、加法规则(多项相加,只保留最高阶的项,且系数变为1)
T(n)=T1(n)+T2(n)=O(f(n))+O(g(n))=O(max(f(n),g(n)))
2、乘法规则(多项相乘,都保留)
T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n),g(n))
常见的渐近时间复杂度为:
O(1)<O(log2n)<O(n)<O(nlog2n)<O(n^2) <O(n^3) <O(2^n)<O(n!)< O(n^n)
空间复杂度
算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它是问题规模n的函数,记为:
S(n)=O(g(n))
算法原地工作是指算法所需的辅助空间为常量,即O(1)。