(秋招复习)自动驾驶与机器人中的SLAM技术(三)

第八章 紧耦合LIO 系统

紧耦合的概念

其实回顾松耦合我们可以发现,松耦合中IMU和Lidar之间还是一种解耦的状态,虽然互相之间有影响,但是两者之间还是没有进一步地将IMU的运动方程和激光雷达的配准部分放在一起,所以紧组合理论上就是实现这一功能的一种形式,在紧耦合系统里,一个模块的工作状态能够直接反映到另一个模块中,帮助它们更好地约束自身的工作维度。

基于IEKF的LIO系统

因为Lidar的配准涉及到迭代的操作,所以这里引入了迭代EKF,也就是IEKF。IEKF的运动方程和之前没有任何区别,但是在迭代的过程中会引入一些问题:
在这里插入图片描述
所以这里的关键问题就是,如何处理这个迭代过程中的切空间变换问题,以及如何处理点云残差过大维度的影响,接下来先来看一下切空间投影变换的影响
在这里插入图片描述
这里有提到,其实相当于只有最后一次迭代,我们才记成了有效的,中间的迭代过程只是改变了更新的起点

### 自动驾驶机器人中的SLAM技术 #### SLAM 技术原理 SLAM(Simultaneous Localization And Mapping),即同步定位地图构建,是指移动设备在未知环境中运动时能够同时完成自我定位和创建该环境的地图的技术[^1]。这一过程主要依赖于传感器数据的采集分析,在自动驾驶领域通常采用激光雷达、摄像头等作为输入源。 对于SLAM的工作机制而言,其核心在于解决两个基本问题: - **定位**:确定载体相对于已知或正在建立的地图的位置; - **建图**:描绘出周围的空间结构以便后续路径规划等功能使用。 为了提升SLAM系统的性能,研究者们引入了多种优化策略和技术手段,比如图优化(Graph SLAM)[^3]以及诸如G2O、Ceres这样的非线性最小化求解器来增强解决方案的质量。 #### 应用场景实例 - **自动驾驶汽车**:借助SLAM技术实现精准的实时定位障碍物识别,保障行车安全性的同时也为高级辅助驾驶功能提供了坚实的基础支持。 ```python import numpy as np def autonomous_vehicle_slam(sensor_data): map_, position = initialize_map_and_position() while not end_of_journey(): update_map(map_, sensor_data) refine_position(position, sensor_data) yield (map_.copy(), position.copy()) sensor_data = get_next_sensor_reading() for m, p in autonomous_vehicle_slam(lidar_readings): plot_current_state(m, p) ``` - **服务型机器人**:无论是家庭清洁还是工业巡检任务,都离不开高效可靠的室内导航能力,而SLAM正是赋予这类机器自主行动的关键所在。 #### 实现方式探讨 开源社区内存在多个成熟的SLAM库可供开发者选用,例如一个名为“Autonomous Driving & Robotics SLAM”的GitHub项目就包含了丰富的代码资源[^2]。该项目不仅涵盖了经典的EKF-SLAM、FAST-SLAM算法,还实现了现代流行的LOAM(Laser Odometry and Mapping)及其变种版本如LeGO-LOAM(lightweight and ground optimized LOAM),适用于不同类型的传感装置。 此外,《机器人SLAM导航核心技术实战》一书深入浅出地讲解了从理论到实践各个环节的知识要点,适合希望深入了解此领域的读者进一步学习[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值