图模型系列2:网络性质及随机图模型

本文探讨了网络性质,包括度分布、路径长度、聚类系数和连通性,并详细介绍了随机图模型,如Gnp模型的度分布、聚类系数和最短路径,以及小世界模型和Kronecker图模型的概念和生成方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网络性质:如何去度量一个网络

将从下面四个关键的网络性质去度量一个网络

  • 度分布(Degree distribution)
  • 路径长度(Path length)
  • 聚类系数(Clustering coefficient)
  • 连接成分(Connected components)

度分布(Degree distribution)

度分布 P ( k ) P(k) P(k):一个随机选择的节点(node)拥有度 k k k的可能性;
N k N_k Nk:拥有度 k k k的节点数目
N N N:节点数目总数
P ( k ) = N k / N P(k)=N_k/N P(k)=Nk/N
在这里插入图片描述
对于有向图,需要区分进度、出度的分布。

图的路径(path)

两个节点通过若干个中间节点相连形成一条路径 P ( n ) P(n) P(n):
P ( n ) = i 0 , i 1 , i 2 , . . . , i n P(n)={i_0,i_1,i_2,...,i_n} P(n)=i0,i1,i2,...,in
P ( n ) = ( i 0 , i 1 ) , ( i 1 , i 2 ) , . . . , ( i n − 1 , i n ) P(n)={(i_0,i_1),(i_1,i_2),...,(i_{n-1},i_n)} P(n)=(i0,i1),(i1,i2),...,(in1,in)

  1. 图的距离
    Distance (shortest path, geodesic):一对节点间的距离定义为沿着经过这些点的最短路径边的数目。如果两点之间没有连接,则距离定义为无穷(或则0)。在有向图中,路径需要沿着箭头方向,所以它的距离不具有对称性。

  1. 网络直径
    Diameter:图中所有对节点的距离最大值;
    对于一个连通图或则强连通有向图的平均路径长度(Average path length):
    h ‾ = 1 2 E m a x ∑ i , j ≠ i h i j \overline{h}=\frac{1}{2E_{max}}\sum_{i,j\neq{i}}h_{ij} h=2Emax1i,j=ihij
    h i j h_{ij} hij是节点 i i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值