机器学习07:线性回归评估 SST、SSE、SSR、R2

本文详细介绍了线性回归评估中的关键概念SST(总平方和)、SSE(误差平方和)、SSR(回归平方和)及R²(决定系数)。通过这些指标可以衡量模型的拟合效果和数据波动情况,帮助理解预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习07:线性回归评估 SST、SSE、SSR、R2

yiy_iyi表示原样本值,y‾\overline{y}y表示原样本值的平均值,y^i\hat{y}_iy^i表示预测的回归值

SST

SST为总平方和,它表示原样本数据总的波动程度,SST越大,波动程度越大。
SST=∑i=1n(yi−y‾)2 SST=\sum_{i=1}^n(y_i-\overline{y})^2 SST=i=1n(yiy)2

SSE

SSE为误差平方和,是指预测值和原样本值之间的误差。
SSE=∑i=1n(yi−yi^)2 SSE=\sum_{i=1}^n(y_i-\hat{y_i})^2 SSE=i=1n(yiyi^)2

SSR

SSR为回归平方和,是指预测值yi^\hat{y_i}yi^相对于y‾\overline{y}y的不同程度。
SSR=∑i=1n(yi^−y‾)2 SSR=\sum_{i=1}^n(\hat{y_i}-\overline{y})^2 SSR=i=1n(yi^y)2

R2

R2用来表示模型拟合的好坏。
R2=∑(yi^−y‾)2∑(yi−y‾)2=1−SSESST=1−∑(yi^−yi)2∑(yi−y‾)2 R^2=\frac{\sum(\hat{y_i}-\overline{y})^2}{\sum(y_i-\overline{y})^2}=1-\frac{SSE}{SST}=1-\frac{\sum(\hat{y_i}-y_i)^2}{\sum(y_i-\overline{y})^2} R2=(yiy)2(yi^y)2=1SSTSSE=1(yiy)2(yi^yi)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值