机器学习07:线性回归评估 SST、SSE、SSR、R2
用yiy_iyi表示原样本值,y‾\overline{y}y表示原样本值的平均值,y^i\hat{y}_iy^i表示预测的回归值
SST
SST为总平方和,它表示原样本数据总的波动程度,SST越大,波动程度越大。
SST=∑i=1n(yi−y‾)2
SST=\sum_{i=1}^n(y_i-\overline{y})^2
SST=i=1∑n(yi−y)2
SSE
SSE为误差平方和,是指预测值和原样本值之间的误差。
SSE=∑i=1n(yi−yi^)2
SSE=\sum_{i=1}^n(y_i-\hat{y_i})^2
SSE=i=1∑n(yi−yi^)2
SSR
SSR为回归平方和,是指预测值yi^\hat{y_i}yi^相对于y‾\overline{y}y的不同程度。
SSR=∑i=1n(yi^−y‾)2
SSR=\sum_{i=1}^n(\hat{y_i}-\overline{y})^2
SSR=i=1∑n(yi^−y)2
R2
R2用来表示模型拟合的好坏。
R2=∑(yi^−y‾)2∑(yi−y‾)2=1−SSESST=1−∑(yi^−yi)2∑(yi−y‾)2
R^2=\frac{\sum(\hat{y_i}-\overline{y})^2}{\sum(y_i-\overline{y})^2}=1-\frac{SSE}{SST}=1-\frac{\sum(\hat{y_i}-y_i)^2}{\sum(y_i-\overline{y})^2}
R2=∑(yi−y)2∑(yi^−y)2=1−SSTSSE=1−∑(yi−y)2∑(yi^−yi)2