数字图像处理:空间滤波基础

本文介绍了空间滤波的基本概念及其在图像处理中的应用。详细解释了如何利用模板进行空间域滤波,包括平滑和锐化等操作,并区分了相关与卷积的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

空间滤波机理

使用空间域模板进行的图像处理,称为空域滤波。模板本身被称为空域滤波器。输出图像中的每一点为输入图像中某个相关区域像素集的映射。

空间滤波相关概念及理解

  • 空间滤波是图像处理领域广泛应用的主要工具之一;
  • “滤波”一次借用于频域处理,其本意是指接受或拒绝一定的频率分量;
  • 空间滤波器作用于图像,可以完成平滑、锐化等类似操作;
  • 空间滤波器又称作掩模、掩膜、核、模板或窗口;
  • 通过掩模操作实现一种邻域运算,待处理像素点的结果由邻域的图像像素以及相应的与邻域有相同维数的子图像得到;
  • 模板的形式并没有必要限制为矩形,矩形只是在数学上易于描述而已;
  • 掩模子图像中的值是系数值/权重值,不是灰度值。

步骤

建立模板,在待处理的图像中逐点移动模板,对每个像素点按照滤波器算法进行计算。

示例

比如,在M∗NM*NMN的图像fff上,使用m∗nm*nmn的滤波器:
g(x,y)=∑s=−aa∑t=−bbw(s,t)f(x+s,y+t) g(x,y)=\sum_{s=-a}^a\sum_{t=-b}^bw(s,t)f(x+s,y+t) g(x,y)=s=aat=bbw(s,t)f(x+s,y+t)
其中,m=2a+1,n=2b+1m=2a+1,n=2b+1m=2a+1,n=2b+1w(s,t)w(s,t)w(s,t)是滤波器系数,f(x,y)f(x,y)f(x,y)是图像像素值。
图示:

空间相关与卷积

已知:图像f(x,y)f(x,y)f(x,y)m∗nm*nmn滤波器w(x,y)w(x,y)w(x,y),其中,m=2a+1,n=2b+1m=2a+1,n=2b+1m=2a+1,n=2b+1.
相关操作
书中的运算符号是一个空心星星,这里我用一个空心菱形。
w(x,y)⋄f(x,y)=∑s=−aa∑t=−bbw(s,t)f(x+s,y+t) w(x,y)\diamond f(x,y)=\sum_{s=-a}^a\sum_{t=-b}^bw(s,t)f(x+s,y+t) w(x,y)f(x,y)=s=aat=bbw(s,t)f(x+s,y+t)
卷积操作:
w(x,y)⋆f(x,y)=∑s=−aa∑t=−bbw(s,t)f(x−s,y−t) w(x,y)\star f(x,y)=\sum_{s=-a}^a\sum_{t=-b}^bw(s,t)f(x-s,y-t) w(x,y)f(x,y)=s=aat=bbw(s,t)f(xs,yt)

实际上,卷积操作实际上是滤波器旋转180°的相关操作。(如果理解有误,请大佬指正)
卷积的具体示例可以参考书中例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值