基本公式汇总

高等数学公式汇总

一、三角函数公式

1、特殊值

在这里插入图片描述

2、二倍角和差公式

1)正余弦和差公式

image-20240619154551961

2)正切和差公式

image-20240619154919619

3)积化和差

image-20240619155022378

4)和差化积

image-20240619155032335

3、平方和公式

image-20240619155059858

image-20240619155225339

4、倍角公式

image-20240619155355151

5、半角公式

image-20240619155414051

6、万能公式

image-20240619155425507

7、辅助角公式

image-20240619155435168

二、反三角函数公式

1、余角关系

image-20240619155547825

2、负数关系

arcsin⁡(−x)=−arcsin⁡xarccos(−x)=π−arccos⁡xarctan(−x)=−arctan⁡(x)arccot⁡(−x)=π−arccot⁡xarcsec⁡(−x)=π−arcsec⁡xarccos(−x)=−arccos⁡x \arcsin(-x)=-\arcsin x \\arccos(-x)=\pi-\arccos x \\arctan\left(-x\right)=-\arctan\left(x\right) \\\operatorname{arccot}(-x)=\pi-\operatorname{arccot}x \\\operatorname{arcsec}(-x)=\pi-\operatorname{arcsec}x \\arccos(-x)=-\arccos x arcsin(x)=arcsinxarccos(x)=πarccosxarctan(x)=arctan(x)arccot(x)=πarccotxarcsec(x)=πarcsecxarccos(x)=arccosx

三、极限公式

1、常见的极限公式

lim⁡x→∞(ax+bax+c)hx+k=eb−cah \lim_{x\rightarrow\infty}(\frac{ax+b}{ax+c})^{hx+k}=e^{\frac{b-c}{a}h} xlim(ax+cax+b)hx+k=eabch

2、等价无穷小

sin⁡x∼xtan⁡x∼xarcsin⁡x∼xarctan⁡x∼x1−cos⁡x∼12x2ln⁡(1+x)∼xex−1∼xax−1∼xln⁡a(1+x)∂−1∼∂x \begin{array}{ll}\sin x\sim x&\tan x\sim x\\\arcsin x\sim x&\arctan x\sim x\\1-\cos x\sim\frac{1}{2}x^{2}& \ln\left(1+x\right)\sim x \\ e^{x}-1\sim x\quad a^{x}-1\sim x\ln a &\left(1+x\right)^{\partial}-1\sim\partial x\end{array} sinxxarcsinxx1cosx21x2ex1xax1xlnatanxxarctanxxln(1+x)x(1+x)1x

3、泰勒公式

1、11−x=1+x+x2+x3+x4+...+xn+...=∑n=0∞xn,x∈(−1,1)2、11+x=1−x+x2−x3+x4−...+(−1)nxn+...=∑n=0∞(−1)nxn,x∈(−1,1)3、ex=1+x+x22!+x33!+x44!+...+xnn!+...=∑n=0∞xnn!,x∈(−∞,∞)4、sin⁡x=x−x33!+x55!−x77!+x99!−...+(−1)nx2n+1(2n+1)!+...=∑n=0∞(−1)nx2n+1(2n+1)!,x∈(−∞,∞)5、cos⁡x=1−x22!+x44!−x66!+x88!−...+(−1)nx2n(2n)!+..=∑n=0∞(−1)nx2n(2n)!,x∈(−∞,∞)6、tan⁡x=x+13x3+215x5+17315x7+...=∑n=0∞B2n(−4)n(1−4n)(2n)!x2n−1,x∈(−π2,π2),B2n是伯努利数 \begin{aligned}1、\frac{1}{1-x}& =1+x+x^2+x^3+x^4+...+x^n+...\\ & =\sum_{n=0}^\infty x^n\quad,\quad x\in(-1,1) \\2、\frac1{1+x}& =1-x+x^2-x^3+x^4-...+(-1)^nx^n+... \\ &=\sum_{n=0}^\infty(-1)^nx^n,x\in(-1,1) \\ 3、\quad e^x& =1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+...+\frac{x^n}{n!}+... \\ &=\sum_{n=0}^\infty\frac{x^n}{n!}\quad,\quad x\in(-\infty,\infty) \\ 4、\quad\sin x& =x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}-...+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+... \\ &=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}\quad,x\in(-\infty,\infty) \\ 5、\quad\cos x& =1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\frac{x^8}{8!}-...+(-1)^n\frac{x^{2n}}{(2n)!}+.. \\ &=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!},x\in(-\infty,\infty) \\ 6、\quad\tan x& =x+\frac13x^3+\frac2{15}x^5+\frac{17}{315}x^7+... \\ &=\sum_{n=0}^{\infty}\frac{B_{2n}(-4)^n(1-4^n)}{(2n)!}x^{2n-1},x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),B_{2n}\text{是伯努利数} \end{aligned} 11x121+x13ex4sinx5cosx6tanx=1+x+x2+x3+x4+...+xn+...=n=0xn,x(1,1)=1x+x2x3+x4...+(1)nxn+...=n=0(1)nxn,x(1,1)=1+x+2!x2+3!x3+4!x4+...+n!xn+...=n=0n!xn,x(,)=x3!x3+5!x57!x7+9!x9...+(1)n(2n+1)!x2n+1+...=n=0(1)n(2n+1)!x2n+1,x(,)=12!x2+4!x46!x6+8!x8...+(1)n(2n)!x2n+..=n=0(1)n(2n)!x2n,x(,)=x+31x3+152x5+31517x7+...=n=0(2n)!B2n(4)n(14n)x2n1,x(2π,2π),B2n是伯努利数

7、 arcsinx=x+12x33+1×32×4x55+1×3×52×4×6x77+⋯+(2n)!22n(n!)2x2n+12n+1=x+x36+3x540+5x7112+...=∑n=0∞(2n)!4n(n!)2x2n+12n+1,x∈[−1,1]8、arctan⁡x=x−x33+x55−⋅⋅⋅+(−1)nx2n+12n+1+⋅⋅⋅=∑n=⁡0∞(−1)nx2n+12n+1,x∈[−1,1]9、ln(1+x)=x−x22+x33−⋯+(−1)nxn+1n+1+...=∑n=⁡0∞(−1)nxn+1n+1,x∈(−1,1]10、(1+x)α=1+αx+α(α−1)2!x2+⋅⋅⋅+α(α−1)...(α−n+1)n!xn+⋅⋅⋅=1+∑n=1∞α(α−1)⋯(α−n+1)n!xn,x∈(−1,1) \begin{aligned} &\text{7、 arcsinx} =x+\frac{1}{2}\frac{x^{3}}{3}+\frac{1\times3}{2\times4}\frac{x^{5}}{5}+\frac{1\times3\times5}{2\times4\times6}\frac{x^{7}}{7}+\cdots+\frac{(2n)!}{2^{2n}(n!)^{2}}\frac{x^{2n+1}}{2n+1}\\&=x+\frac{x^3}6+\frac{3x^5}{40}+\frac{5x^7}{112}+...=\sum_{n=0}^{\infty}\frac{(2n)!}{4^n(n!)^2}\frac{x^{2n+1}}{2n+1},x\in[-1,1] \\ &8、\arctan x =x-\frac{x^3}3+\frac{x^5}5-\cdotp\cdotp\cdotp+\frac{(-1)^nx^{2n+1}}{2n+1}+\cdotp\cdotp\cdotp \\& =\sum_{n\operatorname{=}0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1},x\in[-1,1] \\&9、\text{ln}(1+x) =x-\frac{x^2}2+\frac{x^3}3-\cdots+\frac{(-1)^nx^{n+1}}{n+1}+...\\& =\sum_{n\operatorname{=}0}^\infty(-1)^n\frac{x^{n+1}}{n+1},\quad x\in(-1,1] \\ &10、(1+x)^\alpha =1+\alpha x+\frac{\alpha\left(\alpha-1\right)}{2!}x^2+\cdotp\cdotp\cdotp+\frac{\alpha\left(\alpha-1\right)...\left(\alpha-n+1\right)}{n!}x^n+\cdotp\cdotp\cdotp \\&=1+\sum_{n=1}^{\infty}\frac{\alpha\left(\alpha-1\right)\cdots\left(\alpha-n+1\right)}{n!}x^{n},x\in(-1,1) \end{aligned} 7 arcsinx=x+213x3+2×41×35x5+2×4×61×3×57x7++22n(n!)2(2n)!2n+1x2n+1=x+6x3+403x5+1125x7+...=n=04n(n!)2(2n)!2n+1x2n+1,x[1,1]8arctanx=x3x3+5x5⋅⋅⋅+2n+1(1)nx2n+1+⋅⋅⋅=n=02n+1(1)nx2n+1,x[1,1]9ln(1+x)=x2x2+3x3+n+1(1)nxn+1+...=n=0(1)nn+1xn+1,x(1,1]10(1+x)α=1+αx+2!α(α1)x2+⋅⋅⋅+n!α(α1)...(αn+1)xn+⋅⋅⋅=1+n=1n!α(α1)(αn+1)xn,x(1,1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卷Java

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值