2024国赛数学建模ABC题思路模型代码:文末获取,9.5开赛后第一时间更新
一、数学建模常用五类模型
-
评价模型(Evaluation Model)
评价模型主要用于衡量和评估某个对象或过程的性能、效果或质量。通过定义一系列指标和标准,评价模型帮助我们定量或定性地判断研究对象的优劣,并为改进和优化提供依据。在数学建模竞赛中,评价模型用于衡量方案或系统的效果和性能。通过设定具体的评价指标,如准确性、稳定性和效率,竞赛团队可以定量比较不同方案的优劣,进而选择最优的解决方案。
-
预测模型(Prediction Model)
预测模型利用历史数据和统计方法来预测未来的趋势或结果。预测模型在数学建模竞赛中用于预测未来的趋势或结果,基于历史数据和相关变量。竞赛团队可能使用时间序列分析、回归模型或机器学习算法,应用于诸如市场需求预测、人口增长预测等题目。
-
分类模型
分类模型是一种机器学习模型,用于将输入数据分配到预定义的类别中。分类模型在数学建模竞赛中用于将数据分配到预定义的类别中。竞赛题目可能涉及数据分类的问题,如垃圾邮件检测、信用风险评估等,参赛团队可能使用决策树、支持向量机或神经网络来解决这些问题。
-
优化模型(Optimization Model)
优化模型在数学建模竞赛中用于寻找某个目标函数的最优解,通常在特定的约束条件下。竞赛题目可能涉及资源分配、物流配送或生产计划等问题,团队可能使用线性规划、整数规划或其他优化算法来寻找最优解。
-
统计分析模型(Statistical Model)
除了以上四大模型,在数学建模一些小问题的分析中,还会涉及到其他比较简单的统计分析模型,参赛团队可能需要进行数据处理、描述统计、相关分析、假设检验等。通过分析数据的统计特性,揭示数据背后的规律和关系。
其中评价模型、预测模型、分类模型、统计分析模型一些常用算法如下:
接下来,将逐个模型进行说明。
二、评价模型
数学建模中评价类模型的常用算法有层次分析法、灰色关联法、模糊综合评价、TOPSIS法、数据包络分析、组合评价法等。
1
层次分析法
层次分析法是一种多准则决策方法,常用于复杂系统的分析和评价。它通过将复杂问题分解为若干层次和因素,并按照不同因素的重要性进行打分,最终通过合成各层权重得出不同方案的总体评价。AHP的优点在于能够将定性分析与定量分析相结合,结构清晰,易于操作。然而,它也存在主观性较强、一致性检验可能失效等缺点。
AHP层次分析法包括两个步骤,分别是权重计算和一致性检验(SPSSAU会默认输出);
-
SPSSAU软件操作:
AHP层次分析法的数据格式比较特殊,需要手工录入判断矩阵,如下图:
判断矩阵解读:门票相对于景色来讲,重要性更高,所以为3分;相反,景色相对于门票来讲,则为0.33333分。交通相对于景色来更重要为2分,其余类似下去。
AHP层次分析详细说明及案例操作解读请点击查看下方帮助手册:
2
灰色关联法
灰色关联分析法通过研究数据关联性大小(母序列与特征序列之间的关联程度),通过关联度(即关联性大小)进行度量数据之间的关联程度,从而辅助决策的一种研究方法。