基于yolo-v3的目标检测模型
文章目录
一、项目简述
目标一:通过深度学习模型,主要是采用实时性较好的yolo-v3模型检测加油站场景下的人和手机。
目标二:复现最新论文中的方法,识别场景中的人物交互关系,主要是识别加油站中人员打手机的行为。
二、检测部分完整训练过程
1、数据准备及预处理
(1)、使用标注工具BBox-Label-Tool对加油站图像中的人和物进行标注,主要标注了人,和手机两种类别,以及框的坐标。获得数据集2000张图片,以5 :3:2划分训练集,验证集和测试集。
(2)、因为数据量较大,每次训练都直接读取的话效率就很低,所以tensorflow就提供了一种较为高效的数据读取方式tfrecord,可通过convert_tfrecord.py基于图像数据生成tfrecord生成trainset和testset。
(3)、下载用coco数据集预训练好的权重模型yolov3.weights进行初始化
地址:https://github.com/YunYang1994/tensorflow-yolov3
2、训练模型
(1)、登陆服务器后,进入“/data/videoAnalisys/yolo/train_demo”,运行:
CUDA_VISIBLE_DEVICE=0 python quick_train.py
即可利用GPU训练模型。
(2)、最开始运行可能会报错,module not found e