基于yolo-v3的目标检测模型

本文介绍了一个基于yolo-v3的目标检测模型在加油站场景的应用,用于检测人和手机并识别人物交互,特别是识别打手机行为。详细阐述了数据准备、模型训练、模型保存和转化以及人物交互关系的识别方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于yolo-v3的目标检测模型


一、项目简述

目标一:通过深度学习模型,主要是采用实时性较好的yolo-v3模型检测加油站场景下的人和手机。

目标二:复现最新论文中的方法,识别场景中的人物交互关系,主要是识别加油站中人员打手机的行为。

二、检测部分完整训练过程

1、数据准备及预处理

(1)、使用标注工具BBox-Label-Tool对加油站图像中的人和物进行标注,主要标注了人,和手机两种类别,以及框的坐标。获得数据集2000张图片,以5 :3:2划分训练集,验证集和测试集。

(2)、因为数据量较大,每次训练都直接读取的话效率就很低,所以tensorflow就提供了一种较为高效的数据读取方式tfrecord,可通过convert_tfrecord.py基于图像数据生成tfrecord生成trainset和testset。

(3)、下载用coco数据集预训练好的权重模型yolov3.weights进行初始化
地址:https://github.com/YunYang1994/tensorflow-yolov3

2、训练模型

(1)、登陆服务器后,进入“/data/videoAnalisys/yolo/train_demo”,运行:

CUDA_VISIBLE_DEVICE=0 python quick_train.py

即可利用GPU训练模型。
(2)、最开始运行可能会报错,module not found e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值