
🏁学习打卡
文章平均质量分 87
学无止境,不断进行学习打卡,记录我学习的过程进行学习。
风信子的猫Redamancy
在校本科大学生 B站up小白风信子的猫Redamancy 个人博客地址: https://kedreamix.github.io/
2022第十三届蓝桥杯PythonB组省一等奖,以及国赛一等奖
2022年第十二届MathorCup高校数学建模挑战赛 研究生组 二等奖
对计算机视觉,人工智能,以及机器学习等方面感兴趣
放弃不难 但坚持一定很酷
成功的法则极为简单,但简单并不代表容易
希望自己在这条路上,不孤单,不言弃,不言败
Stay Hungry,Stay Foolish
有时候没有及时回私信等等,可以发邮件咨询,[email protected],你们的问题我都会认真看和回答的
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
EMO: Emote Portrait Alive - 阿里HumanAIGC
最近这一个星期,也就是2月28日的时候,阿里巴巴的HumanAIGC团队发布了一款全新的生成式AI模型EMO(Emote Portrait Alive)。EMO仅需一张人物肖像照片和音频,就可以让照片中的人物按照音频内容“张嘴”唱歌、说话,且口型基本一致,面部表情和头部姿态非常自然,发布的视频效果非常好,好的几乎难以置信,特别是蔡徐坤唱rap的第一段,效果非常好。原创 2024-03-04 11:21:34 · 2790 阅读 · 0 评论 -
FastAPI 快速教程: 从零开始构建你的第一个API项目
FastAPI 是一个用于构建 API 的现代、快速(高性能)的 web 框架,使用 Python 3.8+ 并基于标准的 Python 类型提示。文档源码快速:可与NodeJS和Go并肩的极高性能(归功于 Starlette 和 Pydantic)。最快的 Python web 框架之一。高效编码:提高功能开发速度约 200% 至 300%。更少 bug:减少约 40% 的人为(开发者)导致错误。智能:极佳的编辑器支持。处处皆可自动补全,减少调试时间。简单:设计的易于使用和学习,阅读文档的时间更短。原创 2024-01-18 02:02:17 · 12406 阅读 · 4 评论 -
Coggle 30 Days of ML(23年7月)任务十:使用Bert在比赛数据集中完成预训练
Coggle 30 Days of ML(23年7月)任务十:使用Bert在比赛数据集中完成预训练。准备比赛数据集和预训练参数。使用Bert模型对比赛数据集进行预训练,提取文本特征。定义数据集和训练函数。训练模型并验证,保存准确率最高的模型。加载最佳模型进行预测并保存结果为CSV文件。原创 2023-07-11 20:00:00 · 1040 阅读 · 0 评论 -
Coggle 30 Days of ML(23年7月)任务九:学会Bert基础,transformer库基础使用
BERT模型是一种基于Transformer架构的深度学习模型,它使用了维基百科等大规模无标签的语料库数据进行无监督的预训练。BERT通过两个任务来训练模型:Masked Language Modeling和Next Sentence Prediction。Masked Language Modeling是通过在输入句子中遮盖一些词并让模型预测被遮盖的词来训练模型。Next Sentence Prediction是判断一个句子B是否是句子A的下一句。BERT模型可用于各种下游任务,如文本分类、问答和序列标注原创 2023-07-11 13:39:12 · 1176 阅读 · 0 评论 -
Coggle 30 Days of ML(23年7月)任务八:训练BILSTM模型
Coggle 30天ML任务8: 使用Word2Vec词向量训练和预测BILSTM模型。 BILSTM模型结合了前向和后向LSTM,用于文本分类。通过准备Word2Vec词向量模型和训练数据集。构建BILSTM模型,包括嵌入层、BILSTM层和全连接层,将词向量应用到模型中。使用训练数据对BILSTM进行训练。然后使用训练好的模型对测试数据集进行预测。 BILSTM模型对于捕捉长距离的依赖关系非常有效,尤其适用于情感分类等任务。最终,将预测结果保存到提交文件中。原创 2023-07-11 13:09:26 · 442 阅读 · 0 评论 -
Coggle 30 Days of ML(23年7月)任务七:训练TextCNN模型
任务七:使用Word2Vec词向量,搭建TextCNN模型进行文本分类的训练和预测。准备Word2Vec词向量模型和训练数据集。构建TextCNN模型,包括卷积层、池化层、全连接层等。将Word2Vec词向量应用到模型中。使用训练数据集对TextCNN模型进行训练。使用训练好的TextCNN模型对测试数据集进行预测,导入训练好的Word2Vec模型。准备词向量模型和训练数据集。获取词向量的维度并转换训练和测试数据集文本为词向量表示。构建TextCNN模型,包括卷积层、池化层、全连接层。训练模型,设置优化器和原创 2023-07-10 17:25:06 · 501 阅读 · 0 评论 -
Coggle 30 Days of ML(23年7月)任务六:训练FastText、Word2Vec词向量
任务六:学会训练FastText、Word2Vec词向量- 说明:在这个任务中,你将学习如何训练FastText和Word2Vec词向量模型,这些词向量模型可以捕捉文本中的语义信息。- 实践步骤: 1. 准备大规模文本语料库。 2. 使用FastText或gensim库中的Word2Vec类,设置相应的参数(如词向量维度、窗口大小、训练迭代次数等)来构建词向量模型。 3. 使用Word2Vec类的build_vocab()方法,构建词汇表。 4. 使用Word2Vec类的train()原创 2023-07-10 16:22:58 · 1394 阅读 · 0 评论 -
Coggle 30 Days of ML(23年7月)任务五:XGBoost训练与预测
Coggle 30 Days of ML(23年7月)任务五:使用TFIDF特征和XGBoost完成训练和预测,提升文本分类性能。TFIDF提取特征,训练XGBoost模型,评估模型性能。用模型预测并提交结果文件,得分0.8848。改进后加入交叉验证,使用cross_val_predict()函数评估模型性能和泛化能力。最终得到更好的成绩97.36,继续努力冲99+。XGBoost潜力大,还可以继续提升。原创 2023-07-09 18:49:11 · 525 阅读 · 0 评论 -
Coggle 30 Days of ML(23年7月)任务四:线性模型训练与预测
Coggle 30 Days of ML(23年7月)任务四:线性模型训练与预测。使用TFIDF特征和线性模型(如逻辑回归)完成训练和预测,评估模型性能,包括准确率、精确率、召回率。调整TfidfVectorizer超参数可提高模型精度。使用Sklearn中的线性模型进行训练,得到不错的结果。评估准确率、精确率和召回率均在95%以上。利用混淆矩阵进行可视化。最后使用模型对测试集进行预测并提交,得分为0.8837,存在过拟合情况,可考虑使用更强大的模型或防止过拟合的方法提高分数。原创 2023-07-09 18:35:03 · 354 阅读 · 0 评论 -
Coggle 30 Days of ML(23年7月)任务三:使用TFIDF提取文本特征
Coggle 30 Days of ML(23年7月)任务三:使用TFIDF提取文本特征。TFIDF提取器使用Sklearn库的TfidfVectorizer类。通过设置参数如ngram_range和max_features,可以构建TFIDF特征矩阵。TFIDF算法结合Term Frequency(单词频率)和Inverse Document Frequency(逆文档频率)对文本进行表示。TF用于计算查询关键字中单词在文档中出现的次数,而IDF对出现在太多文档中的单词进行“惩罚”。TfidfVector原创 2023-07-09 18:34:38 · 567 阅读 · 0 评论 -
Coggle 30 Days of ML (23年7月)任务二:数据可视化
Coggle 30 Days of ML (23年7月)任务二:数据可视化使用Pandas库对数据集字符进行可视化,统计标签和字符分布。数据读取后,对字段进行可视化展示,并统计标签和字符的分布情况。主要关注内容字段和标签字段。统计了字符列表长度,大部分为200,少数不是。标签分布呈现不平衡,大部分为0。字符分布统计显示最常出现的数字为3125。对不同标签数据进行分别查看字符分布统计,差异不大。可继续探究和学习。原创 2023-07-09 16:45:47 · 1109 阅读 · 0 评论 -
Coggle 30 Days of ML(2023年7月)任务一:比赛报名及数据读取
Coggle 30 Days of ML(2023年7月)任务一:报名比赛,下载比赛数据集并完成数据读取比赛报名及数据读取。访问比赛网站并完成报名,下载比赛数据集,并使用Pandas库读取数据。导入Pandas库并使用它来读取训练数据和测试数据。两个数据集包含“name”,“label”和“content”字段。原创 2023-07-09 16:45:06 · 299 阅读 · 0 评论 -
Coggle 30 Days of ML 打卡任务三:苹果病害模型训练与预测
本次打卡任务是 Coggle 30 Days of ML 中的第三项任务。任务要求参赛选手利用提供的苹果病害数据集构建模型,并进行模型训练和预测。参赛选手可以选择合适的深度学习框架和模型架构,并使用训练集进行模型训练。然后,选手需要利用训练好的模型对测试集中的苹果叶片病害图像进行预测。任务名称难度/分值任务1:两个赛题数据可视化低/1任务2:苹果病害数据加载与数据增强中/2任务3:苹果病害模型训练与预测中/2任务4:苹果病害模型优化与多折训练高/3任务5:建筑物检测数据加载与数据增强。原创 2023-06-13 10:51:08 · 760 阅读 · 0 评论 -
Coggle 30 Days of ML 打卡任务二:苹果病害数据加载与数据增强
本次打卡任务是 Coggle 30 Days of ML 中的第二项任务,要求完成苹果病害数据加载与数据增强。数据加载阶段,参赛选手需要编写代码来读取和处理提供的图像数据。数据增强阶段,选手可以使用各种图像处理技术和方法,如旋转、缩放、翻转、亮度调整等,来增强数据集的多样性和数量。任务名称难度/分值任务1:两个赛题数据可视化低/1任务2:苹果病害数据加载与数据增强中/2任务3:苹果病害模型训练与预测中/2任务4:苹果病害模型优化与多折训练高/3任务5:建筑物检测数据加载与数据增强。原创 2023-06-10 08:00:00 · 581 阅读 · 0 评论 -
Coggle 30 Days of ML 打卡任务一:两个赛题数据可视化
本次打卡任务是 Coggle 30 Days of ML 中的第一项任务,要求完成两个赛题的数据可视化。赛题1是苹果叶片病害识别,提供了九类自然环境下苹果叶片的病害图像数据,参赛选手需要展示图像及其标签。赛题2是建筑物变化检测,提供了"吉林一号"高分辨率卫星遥感影像作为数据集,选手需要展示影像中的建筑物变化。任务名称难度/分值任务1:两个赛题数据可视化低/1任务2:苹果病害数据加载与数据增强中/2任务3:苹果病害模型训练与预测中/2任务4:苹果病害模型优化与多折训练高/3。原创 2023-06-09 18:51:20 · 1611 阅读 · 0 评论 -
李航统计学习方法 Chapter1 统计学习方法概论
第1章 统计学习方法概论1.统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行分析与预测的一门学科。统计学习包括监督学习、非监督学习、半监督学习和强化学习。2.统计学习方法三要素——模型、策略、算法,对理解统计学习方法起到提纲挈领的作用。3.本书主要讨论监督学习,监督学习可以概括如下:从给定有限的训练数据出发, 假设数据是独立同分布的,而且假设模型属于某个假设空间,应用某一评价准则,从假设空间中选取一个最优的模型,使它对已给训练数据及未知测试数据在给定评价标准意义下有最准确的预测。4.原创 2021-04-21 19:25:16 · 8072 阅读 · 2 评论 -
【学习打卡07】 可解释机器学习笔记之Shape+Lime代码实战
在这次任务中,主要学习到了Shap和Lime工具包的使用,在图像分类的基础上去解释他,知其然还要知其所以然。使用CAM和Captum工具包,可以减少我们很多很多的代码量,并且能快速使用,快速应用在自己的任务中、在经过一个多星期的学习,也是需要这种代码实战告诉我们,这些应用是全面且方方面面的,这样就不会空读理论,这样可以让我们有机会将理论和实践结合起来,希望后续能够将XAI和Lime运用到我的领域中,学习到更多的知识。原创 2022-12-25 23:05:01 · 1553 阅读 · 0 评论 -
【学习打卡05】可解释机器学习笔记之CAM+Captum代码实战
在前面经过4个知识的学习之后,已经对可解释机器学习有了一定的了解,但是这些有什么用呢,最重要的当然是代码实战,所以这一部分学习的就是CAM和Captum的一些可视化的代码实战,能将理论和代码结合起来,方便我们理解和学习。,可以用pytorch训练自己的图像分类模型,基于torch-cam实现各个类别、单张图像、视频文件、摄像头实时画面的CAM可视化在这次任务中,主要学习到了CAM和Captum工具包的使用,在图像分类的基础上去解释他,知其然还要知其所以然。原创 2022-12-22 00:16:37 · 2273 阅读 · 0 评论 -
【学习打卡04】可解释机器学习笔记之Grad-CAM
其实 CAM 得到的效果已经很不错了,但是由于其需要修改网络结构并对模型进行重新训练,这样就导致其应用起来很不方便。CAM的缺点必须得有GAP层,否则得修改模型结构后重新训练只能分析最后一层卷积层输出,无法分析中间层仅限图像分类任务Grad-CAM解决了上述问题,基本思路和CAM是一致的,也是通过得到每对特征图对应的权重,最后求一个加权和。区别是求解权重的过程,CAM通过替换全连接层为GAP层,重新训练得到权重,而Grad-CAM另辟蹊径,用梯度的全局平均来计算权重。原创 2022-12-18 23:02:45 · 3714 阅读 · 0 评论 -
【学习打卡03】可解释机器学习笔记之CAM类激活热力图
一直以来,深度神经网络的可解释性都被大家诟病,训练一个神经网络被调侃为“炼丹”。所得的模型也像一个“黑盒”一样,给它一个输入,然后得到结果,却不知道模型是如何得出结论的,究竟学习到了什么知识。如果能将其训练或者推理过程可视化,那么可以对其更加深入的理解,目前深度神经网络可视化可以分为:可视化卷积核;可视化特征图;可视化激活热力图,也就是不同位置像素点对得出结果的影响程度图 神经网络可视化汇总。原创 2022-12-17 22:40:44 · 4310 阅读 · 1 评论 -
【学习打卡01】可解释机器学习之导论
首先非常感谢同济子豪兄拍摄的可解释机器学习公开课,并且免费分享,这门课程,包含人工智能可解释性、显著性分析领域的导论、算法综述、经典论文精读、代码实战、前沿讲座。由B站知名人工智能科普UP主“同济子豪兄”主讲。 课程主页:https://github.com/TommyZihao/zihao_course/blob/main/XAI 一起打开AI的黑盒子,洞悉AI的脑回路和注意力,解释它、了解它、改进它,进而信赖它。知其然,也知其所以然。这里给出链接,倡导大家一起学习,别忘了给子豪兄点个关注哦。原创 2022-12-13 12:21:25 · 1231 阅读 · 0 评论 -
【学习打卡02】可解释机器学习笔记之ZFNet
首先简单介绍一下ZFNet吧,ZFNet来源于2013的Matthew D. Zeiler和Rob Fergus的Visualizing and Understanding Convolutional Networks论文,为什么叫ZFNet也很简单,作者的两个名的首字母加起来就是啦,这里也给出论文地址,有兴趣可以看看论文在 2013 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中,ZFNet 比 AlexNet 有了显着改进,成为众人瞩目的焦点。原创 2022-12-15 22:50:09 · 988 阅读 · 0 评论