近世代数总结

本文介绍了代数系统的基本概念,包括封闭性、二元运算、消去律和幂等律。讨论了单位元和零元的概念,以及逆元在代数结构中的角色。进一步,文章深入到群论,定义了半群、独异点、群和阿贝尔群,强调了循环群的特性及其与阶的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代数系统基础

概念: 

代数系统

封闭性:

函数:AxA->A称为A上的二元运算

消去律:

(1)若满足a*x=a*y=>x=y,则a为左可消元

(2)若满足x*a=y*a=>x=y,则a为右可消元

(3)若a既是左可消元又是右可消元则a满足消去律

若A中所有元素都是可消去元,则*满足消去律

幂等律:

(1)若a*a=a,则a是幂等元

(2)若A中所有元素都是幂等元,则*满足幂等律

单位元:

存在e∈A,对任意x∈A满足e*x=x*e=x,则e为单位元

零元:

存在b∈A,对任意x∈A满足b*x=x*b=b,则b为零元

逆元:

任意a∈A若存在b∈A,b*a=e则b为左逆元;a*b=e,则b为右逆元;若b既是左逆元又是右逆元则b是逆元;

子代数:

取代数非空集;

同态:

如果f(x*y)=f(x)of(y),则*与o同态;

*=o的时候则为自同态;

同态像:

f(A)={f(x)|x∈A};

单同态:

同态映像是单射;

满同态:

同态映像是满射;

同构:

同态映像是双射;

群论

半群:

二元代数<A,*>满足结合律;

独异点(含幺半群):

半群,有单位元,<A,*,e>

群:

独异点,每个元素有逆元

阿贝尔群(可交换群):

群,满足交换律a*b=b*a

群的性质:

  1. 群中单位元是唯一幂等元
  2. 阶大于1的群没有零元
  3. 群满足消去律

阶:

满足a^n=e的最小正整数n称为a的阶

循环群:

群中任意元素可由其中一个元素的幂表示;

  1. 有限阶群是循环群当且仅当存在一个元素a的阶等于群的阶
  2. 循环群必是交换群
  3. <Zn,*>是循环群所有生成元满足a与n互素
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值