代数系统基础
概念:
代数系统
封闭性:
函数:AxA->A称为A上的二元运算
消去律:
(1)若满足a*x=a*y=>x=y,则a为左可消元
(2)若满足x*a=y*a=>x=y,则a为右可消元
(3)若a既是左可消元又是右可消元则a满足消去律
若A中所有元素都是可消去元,则*满足消去律
幂等律:
(1)若a*a=a,则a是幂等元
(2)若A中所有元素都是幂等元,则*满足幂等律
单位元:
存在e∈A,对任意x∈A满足e*x=x*e=x,则e为单位元
零元:
存在b∈A,对任意x∈A满足b*x=x*b=b,则b为零元
逆元:
任意a∈A若存在b∈A,b*a=e则b为左逆元;a*b=e,则b为右逆元;若b既是左逆元又是右逆元则b是逆元;
子代数:
取代数非空集;
同态:
如果f(x*y)=f(x)of(y),则*与o同态;
*=o的时候则为自同态;
同态像:
f(A)={f(x)|x∈A};
单同态:
同态映像是单射;
满同态:
同态映像是满射;
同构:
同态映像是双射;
群论
半群:
二元代数<A,*>满足结合律;
独异点(含幺半群):
半群,有单位元,<A,*,e>
群:
独异点,每个元素有逆元
阿贝尔群(可交换群):
群,满足交换律a*b=b*a
群的性质:
- 群中单位元是唯一幂等元
- 阶大于1的群没有零元
- 群满足消去律
阶:
满足a^n=e的最小正整数n称为a的阶
循环群:
群中任意元素可由其中一个元素的幂表示;
- 有限阶群是循环群当且仅当存在一个元素a的阶等于群的阶
- 循环群必是交换群
- <Zn,*>是循环群所有生成元满足a与n互素