机器学习笔记(二)

本文探讨了过拟合问题在机器学习中的表现及其解决方案,包括增加数据量、减少特征数量以及使用正则化技术。重点介绍了正则化如何通过梯度下降调整权重参数,并介绍了神经网络的基本结构和SoftMax回归在多分类问题中的应用及损失函数计算。

过拟合

在这里插入图片描述

如下图左边,模型出现了过拟合现象

为了解决过拟合现象, 其中一个做法是多收集数据,如右图

第二种做法是减少模型的特征数量,即x

第三种做法是正则化

在这里插入图片描述
正则化就是减少x前面的参数 w的数值, 不用消除x
在这里插入图片描述

正则化的梯度下降如下, 因为只是缩小了w的值,而 b的值保持不变
在这里插入图片描述

正则化的工作原理就是缩小参数w的值

在这里插入图片描述
假如 wj(1-0.0028) 那么wj就会一点点变小

神经网络

下图是神经网络基本的传递

在这里插入图片描述

下图是神经网络构成集型的一种方式
在这里插入图片描述
在这里插入图片描述

这里 A_in 和 W 都是代表矩阵,其中 w是两行三列

常见的激活函数g(Z)

在这里插入图片描述

多分类问题

在这里插入图片描述
前面讨论只有两种情况,这次问题是有多种类型需要分类

需要构建决策边界

SoftMax回归模型

下面的例子是当有四种分类的情况下

在这里插入图片描述

由此可以推出Softmax的公式如下
在这里插入图片描述

SoftMax的损失

在这里插入图片描述
左侧是逻辑回归即二元回归
右侧是 SoftMax多元回归

loss 指的是 单次 计算的损失

J 值的是整个计算过程的损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半岛铁盒@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值