LeetCode-96.不同的二叉搜索树

本文介绍了一种计算由n个节点组成的二叉搜索树的不同构造方式的数量的方法。通过递归地将问题分解为左右子树,利用动态规划思想得出递推公式。最终实现了O(n^2)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.题目描述
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
输入:n = 3
输出:5
二.思路
①用1…n这n个数构建二叉搜索树,遍历这n个数,令i(1<=i<=n)作为二叉树的根节点,那么用1…i-1构建其左子树,用i+1…n构建其右子树,这样就分解成两个子问题。
当序列长度一定时,不管序列中值的范围是什么,该序列能构建不同的二叉搜索树数量相同。
③设G[n]表示长度为n的序列能构建不同二叉搜索树的数量。F(i,n)表示当头结点为i,序列长度为n能构建不同二叉搜索树的数量。
由此:可以构建二叉搜索树的数量是头结点从1到n时,每个不同的头结点能构建的二叉搜索树的数量之和,因为头结点不同可以保证二叉搜索树是不同的。

在这里插入图片描述
当头结点为i时,能够构建的二叉搜索树长度,等于用长度为i-1的序列构建出来左子树的数量乘以用长度n-i的序列构建出来右子树的的数量。
在这里插入图片描述
综上可得,G[n]的递推公式:
在这里插入图片描述
边界情况是G[0]=1,G[1]=1。

参考这里
三.代码

class Solution {
public:
    int numTrees(int n) {
        int G[n+5];
        memset(G,0,sizeof(G));
        G[0]=1;
        G[1]=1;
        for(int i=2;i<=n;i++){
            for(int j=1;j<=i;j++){
                G[i]+=G[j-1]*G[i-j];
            }
        }
        return G[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值