一.题目描述
给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。
输入:n = 3
输出:5
二.思路
①用1…n这n个数构建二叉搜索树,遍历这n个数,令i(1<=i<=n)作为二叉树的根节点,那么用1…i-1构建其左子树,用i+1…n构建其右子树,这样就分解成两个子问题。
②当序列长度一定时,不管序列中值的范围是什么,该序列能构建不同的二叉搜索树数量相同。
③设G[n]表示长度为n的序列能构建不同二叉搜索树的数量。F(i,n)表示当头结点为i,序列长度为n能构建不同二叉搜索树的数量。
由此:可以构建二叉搜索树的数量是头结点从1到n时,每个不同的头结点能构建的二叉搜索树的数量之和,因为头结点不同可以保证二叉搜索树是不同的。
当头结点为i时,能够构建的二叉搜索树长度,等于用长度为i-1的序列构建出来左子树的数量乘以用长度n-i的序列构建出来右子树的的数量。
综上可得,G[n]的递推公式:
边界情况是G[0]=1,G[1]=1。
参考这里
三.代码
class Solution {
public:
int numTrees(int n) {
int G[n+5];
memset(G,0,sizeof(G));
G[0]=1;
G[1]=1;
for(int i=2;i<=n;i++){
for(int j=1;j<=i;j++){
G[i]+=G[j-1]*G[i-j];
}
}
return G[n];
}
};