测试之自动化测试用例生成
1. 数据收集与预处理
准备环境:
pip install numpy pandas scikit-learn
1. 数据收集与预处理
首先,成功的测试用例生成依赖于丰富的历史数据。这些数据包括现有的测试用例、缺陷报告以及代码变更记录等。在这一阶段,我们对收集到的数据进行清洗,以去除冗余和不相关的信息,从而提升数据的准确性和一致性。此外,特征提取是此过程的重要环节,通过从历史数据中提取关键特征(如输入参数范围、期望输出、执行时间等),为后续的模型训练奠定基础。
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
# 假设这是我们的目标函数
def add(x, y):
return x + y
# 收集历史测试用例数据
# 假设我们有一组输入输出数据
data = {
'input_x': [1, 2, 3, 4, 5, 6],
'input_y': [2, 3, 4, 5, 6, 7],
'output': [3, 5, 7, 9, 11, 13] # 对应的加法结果
}
df = pd.DataFrame(data)
# 特征与标签
X = df[['input_x', 'input_y']]
y = df['output']
# 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)