图像分割-改进网络结构

图像分割-改进网络结构

1. 如何找到值得问的问题?

  • 模型精度低
  • 模型精度多少才算低
  • 某一类样本精度低

靠近图片边缘区域的mask缺失率高;特定形状如矩形mask形状预测差;训练集中样本不均较少的类精度低

  • 预测存在结构性问题:mask召回率低;分割精度升高,分类精度降低

在这里插入图片描述

例子1:

  • 正样本召回率很低(看notebook、model_visulize.ipynb)
  • 多任务学习(Muti-Task)
  • 修改代码、跑实验

在这里插入图片描述

例子2:
问题:是否存在更好的网络结构?
办法1:增加网络体积,调大neuron数量。going deeper
办法2:更好的网络架构:Vanilla Unet, SCSE Unet,Attention Unet
在这里插入图片描述

2. 各项任务

  • 分类任务:encorder+classifier layer(1层)
  • 分割任务:encorder+decoder

encoder/backbone:
resnet家族:resnet系列,resnext系列,se-resnet系列,se-resnext系列
efficientnet家族:b0,b1,b2,……,b7
其他:inception系列,vgg系列,densenet系列
在这里插入图片描述

efficientnet系列

  • 更高效(网络体积相对更小)
  • 更高精度

在这里插入图片描述

3. Multi-stage训练方案

通过冻结-部分网络(freeze),起到微调:

  • 迁移学习
  • 业务数据量小
  • 噪音大

多种图片尺寸

  • 先在128*128小尺寸图片上训练
  • 最后通过提高图片尺寸finetuning

使用不同loss进行finetuning

  • 先用BCE训练
  • 最后用lovasz loss/Dice loss,微调几个EPOCH
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值