【目标检测经典算法】R-CNN、Fast R-CNN和Faster R-CNN详解系列二:Fast R-CNN图文详解
概念预设
感受野
感受野(Receptive Field) 是指特征图上的某个点能看到的输入图像的区域。
- 神经元感受野的值越大表示其能接触到的原始图像范围就越大,也意味着它可能蕴含更为全局,语义层次更高的特征;
- 值越小则表示其所包含的特征越趋向局部和细节。
在论文中,ZF网络特征图中 3 ∗ 3 3*3 3∗3的滑动窗口在原图中的感受野为 171 ∗ 171 171*171 171∗171
RPN
框架
Faster R-CNN不再需要SS算法进行候选框的生成,而是使用RPN进行锚框的生成和筛选,可以和分类回归任务放在一起进行实现,是一个一阶段任务。
anchor box
什么是anchors
在图像上预设好的不同大小,不同长宽比的参照框。 论文中设定每个区域可以生成k个anchor box。
anchors的大小和比例
由于每个