【目标检测经典算法】R-CNN、Fast R-CNN和Faster R-CNN详解系列三:Faster R-CNN图文详解

【目标检测经典算法】R-CNN、Fast R-CNN和Faster R-CNN详解系列二:Fast R-CNN图文详解

概念预设

感受野

感受野(Receptive Field) 是指特征图上的某个点能看到的输入图像的区域

  • 神经元感受野的值越大表示其能接触到的原始图像范围就越大,也意味着它可能蕴含更为全局,语义层次更高的特征;
  • 值越小则表示其所包含的特征越趋向局部和细节。

在这里插入图片描述
在论文中,ZF网络特征图中 3 ∗ 3 3*3 33的滑动窗口在原图中的感受野为 171 ∗ 171 171*171 171171

RPN

框架

Faster R-CNN不再需要SS算法进行候选框的生成,而是使用RPN进行锚框的生成和筛选,可以和分类回归任务放在一起进行实现,是一个一阶段任务。
在这里插入图片描述

anchor box

什么是anchors

在图像上预设好的不同大小,不同长宽比的参照框。 论文中设定每个区域可以生成k个anchor box。
在这里插入图片描述

anchors的大小和比例

由于每个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值