【题解-Acwing】11. 背包问题求方案数

题目:11. 背包问题求方案数

题目描述

N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。

i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出 最优选法的方案数。注意答案可能很大,请输出答案模 1 0 9 + 7 10^9+7 109+7
的结果。

输入格式

第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N N N 行,每行两个整数 v i v_i vi, w i w_i wi,用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式

输出一个整数,表示 方案数 模 1 0 9 + 7 10^9+7 109+7 的结果。

数据范围

0 < N , V ≤ 1000 0<N,V≤1000 0<N,V1000

0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi1000

时空限制

1s / 64MB

输入样例

4 5
1 2
2 4
3 4
4 6

输出样例

2

代码1(二维数组)

#include<iostream>

using namespace std;

const int MaxN = 1000 + 10, MaxV = 1000 + 10, mod = 1e9 + 7;

int N, V, v[MaxN], w[MaxN], f[MaxN][MaxV], g[MaxN][MaxV];

int main(){
    cin >> N >> V;
    for(int i = 1; i <= N; i ++){
        cin >> v[i] >> w[i];
        for(int j = 0; j <= V; j ++){
            f[i][j] = f[i - 1][j];
            
            if(v[i] <= j){
                f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
            }
        }
    }
    
    g[0][0] = 1;
    for(int i = 1; i <= N; i ++){
        for(int j = 0; j <= V; j ++){
            if(f[i][j] == f[i - 1][j]){
                g[i][j] = (g[i][j] + g[i - 1][j]) % mod;
            }
            if(j >= v[i] && f[i][j] == f[i - 1][j - v[i]] + w[i]){
                g[i][j] = (g[i][j] + g[i - 1][j - v[i]]) % mod;
            }
        }
    }
    
    int res = 0;
    for(int j = 0; j <= V; j ++){
        if(f[N][j] == f[N][V]){
            res = (res + g[N][j]) % mod;
        }
    }
    
    cout << res;
    
    return 0;
}

代码2(一维数组)

#include<iostream>
#include<cstring>

using namespace std;

const int MaxV = 1000 + 10, mod = 1e9 + 7;

int N, V, f[MaxV], g[MaxV];

int main(){
    cin >> N >> V;
    
    g[0] = 1;
    
    for(int i = 1; i <= N; i ++){
        int v, w;
        cin >> v >> w;
        
        for(int j = V; j >= v; j --){
            int maxw = max(f[j], f[j - v] + w);
            int ans = 0;
            
            if(maxw == f[j]){
                ans += g[j];
            }
            if(maxw == f[j - v] + w){
                ans += g[j - v];
            }
            
            g[j] = ans % mod;
            f[j] = maxw;
        }
    }
    
    int maxw = 0;
    for(int j = 0; j <= V; j ++){
        maxw = max(maxw, f[j]);
    }
    
    int res = 0;
    for(int j = 0; j <= V; j ++){
        if(maxw == f[j]){
            res = (res + g[j]) % mod;
        }
    }
    
    cout << res;
    
    return 0;
}

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值