题目:11. 背包问题求方案数
题目描述
有 N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。
第 i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出 最优选法的方案数。注意答案可能很大,请输出答案模
1
0
9
+
7
10^9+7
109+7
的结果。
输入格式
第一行两个整数, N N N, V V V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N N N 行,每行两个整数 v i v_i vi, w i w_i wi,用空格隔开,分别表示第 i i i 件物品的体积和价值。
输出格式
输出一个整数,表示 方案数 模 1 0 9 + 7 10^9+7 109+7 的结果。
数据范围
0 < N , V ≤ 1000 0<N,V≤1000 0<N,V≤1000
0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi≤1000
时空限制
1s / 64MB
输入样例
4 5
1 2
2 4
3 4
4 6
输出样例
2
代码1(二维数组)
#include<iostream>
using namespace std;
const int MaxN = 1000 + 10, MaxV = 1000 + 10, mod = 1e9 + 7;
int N, V, v[MaxN], w[MaxN], f[MaxN][MaxV], g[MaxN][MaxV];
int main(){
cin >> N >> V;
for(int i = 1; i <= N; i ++){
cin >> v[i] >> w[i];
for(int j = 0; j <= V; j ++){
f[i][j] = f[i - 1][j];
if(v[i] <= j){
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
}
}
g[0][0] = 1;
for(int i = 1; i <= N; i ++){
for(int j = 0; j <= V; j ++){
if(f[i][j] == f[i - 1][j]){
g[i][j] = (g[i][j] + g[i - 1][j]) % mod;
}
if(j >= v[i] && f[i][j] == f[i - 1][j - v[i]] + w[i]){
g[i][j] = (g[i][j] + g[i - 1][j - v[i]]) % mod;
}
}
}
int res = 0;
for(int j = 0; j <= V; j ++){
if(f[N][j] == f[N][V]){
res = (res + g[N][j]) % mod;
}
}
cout << res;
return 0;
}
代码2(一维数组)
#include<iostream>
#include<cstring>
using namespace std;
const int MaxV = 1000 + 10, mod = 1e9 + 7;
int N, V, f[MaxV], g[MaxV];
int main(){
cin >> N >> V;
g[0] = 1;
for(int i = 1; i <= N; i ++){
int v, w;
cin >> v >> w;
for(int j = V; j >= v; j --){
int maxw = max(f[j], f[j - v] + w);
int ans = 0;
if(maxw == f[j]){
ans += g[j];
}
if(maxw == f[j - v] + w){
ans += g[j - v];
}
g[j] = ans % mod;
f[j] = maxw;
}
}
int maxw = 0;
for(int j = 0; j <= V; j ++){
maxw = max(maxw, f[j]);
}
int res = 0;
for(int j = 0; j <= V; j ++){
if(maxw == f[j]){
res = (res + g[j]) % mod;
}
}
cout << res;
return 0;
}