【人工智能】我与人工智能的100个问题

本文探讨了如何通过优化算法提升机器学习效率,解释了为何在线性回归中相关系数高的变量需要被忽略,以及对数变换对线性回归的影响。同时,介绍了同方差与异方差的观察方法,以及卷积层和全连接层在神经网络中的作用。学习率在训练过程中的重要性也被提及,并列举了多种防止过拟合的解决方案,如正则化、dropout和早停策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

断更了

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-------------------------------------

1.1.1.是否可以通过优化算法提高机器学习的速率:

可以并且会是一件很伟大的事情;

2.2.2.线性回归时,两个变量之间的相关系数>0.8>0.8>0.8时,忽略其中一个变量是否会对结果造成影响,为什么要忽略其中一个变量?

当两个变量的相关系数>0.8>0.8>0.8后,说明两个变量可以相互替代了。如果不忽略其中一个变量的话,相当于该变量的影响增大了,对结果有影响。

3.3.3.用对数变换后的数据做线性回归,对回归结果是否有影响?为什么要进行对数变换?

可以先通过对数变换变成正态图像,等回归完成后,再通过反对数变换变回去。为了使得图像避免左偏或右偏。

4.4.4.同方差和异方差能否通过数据观察出来,而不是图像?

目前只能通过图像观察。

5.5.5.卷积层和全连接层的区别、作用:

前面的层是提取特征,后面的层是分类。卷积层和全连接层的作用是由位置决定的。

6.6.6.学习率的作用:

随着程序的运行,学习率要逐渐缩小。作用是找到最优解。

7.7.7.过度拟合的解决方案和预防方案:

调小模型复杂度,使其适合自己训练集的数量级(缩小宽度和减小深度);训练集越多,过拟合的概率越小。在计算机视觉领域中,增广的方式是对图像旋转,缩放,剪切,添加噪声等;参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小。 正则化是指通过引入额外新信息来解决机器学习中过拟合问题的一种方法。这种额外信息通常的形式是模型复杂性带来的惩罚度。 正则化可以保持模型简单,另外,规则项的使用还可以约束我们的模型的特性。dropout方法在训练的时候让神经元以一定的概率不工作。Early stopping便是一种迭代次数截断的方法来防止过拟合的方法,即在模型对训练数据集迭代收敛之前停止迭代来防止过拟合。Bagging通过平均多个模型的结果,来降低模型的方差。重新清洗数据。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值