Taskonomy迁移学习论文实验环境配置
关于《Taskonomy: Disentangling Task Transfer Learning》论文代码环境的配置,为了不枉费我两个下午的辛苦,记录一下下。
论文简介
这篇论文是个大工程,用完全计算的方法算出深度网络模型间的参数关系,以判断迁移学习后的效果,花了好几年。其结论可以用作好多后续研究的ground truth,具体内容参见文章了。这是官方网站,git代码在此。
环境配置
不得不说,如果一个项目共花10天,配环境就得1天:)
win11+CPU+VScode,在VScode的终端操作
1、克隆仓库
clone下git仓库,把readme看看清楚。如果觉得直接按requirement.txt装即可,那太天真了(按理如此,但我失败了)。如果完全不按requirement.txt,那更天真,会发现库的版本互相不适配,别问我怎么知道的。。。
2、设虚拟环境
conda create -n taskonomy python=3.6
activate taskonomy
python不能用3.4,因为3.4不支持tensorflow1.5
3、设置镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsingh