注:使用tensorflow2.0.0
介绍
若直接按照原文操作会有一些错误,现总结如下:
报错1(已改正):
W = tf.Variable(tf.random_uniform([1,2],-1.0,1.0))
1.AttributeError: module 'tensorflow' has no attribute 'random_uniform'
1.将’random_uniform’改为’random.uniform’即可正确运行
报错2.1:
optimizer = tf.train.GradientDescentOptimizer(0.5)
2.1 AttributeError: module 'tensorflow_core._api.v2.train' has no attribute 'GradientDescentOptimizer'
2.改为:optimizer = optimizer = tf.compat.v1.train.GradientDescentOptimizer(0.5)
参考手册
报错3.1(未改正):
train = optimizer.minimize(loss)
3.1 RuntimeError:`loss` passed to Optimizer.compute_gradients should be a function when eager execution is enabled.
对错误2.1转为另一改错方式
改为:optimizer = tf.keras.optimizers.SGD(0.5)
向下运行报错3.2(未改正):
train = optimizer.minimize(loss)
3.2 TypeError: minimize() missing 1 required positional argument: 'var_list'
改不动了,所参考的原文绝对不是tensorflow2.0版本的,目前水平太浅,阅读API文档
并看不太明白,无法改正,后续有新的发现再改正吧。
以下是目前仍然在报错的代码
#忽略因为下面问题而造成的提示: CPU支持AVX AVX2 (可以加速CPU计算),但安装的TensorFlow 版本不支持
<