- 博客(212)
- 收藏
- 关注
原创 【高等数学】第十一章 曲线积分与曲面积分——第二节 对坐标的曲线积分
:LM1x1y1M2x2y2Mnxnyn)LnMi−1MiMi−1MiMi−1MiΔxiiΔyijΔxixi−xi−1Δyiyi−yi−1FxyPxyiQxyjPxy)Qxy)LMi−1Mi(ξiηi)Fξi。
2025-09-04 19:22:02
65
原创 【高等数学】第十一章 曲线积分与曲面积分——第一节 对弧长的曲线积分
:xOyLABL(xy)μxy)mLM1M2⋯Mn−1Ln(ξiηi)μξiηiΔsi,ΔsiMi−1Mim≈i1∑nμξiηiΔsi.λnmλ→0mλ→0limi1∑nμξiηiΔsiLxOyfxy)LLM1M2⋯MnLniΔsi(ξiη。
2025-09-02 21:40:56
187
原创 【高等数学】第十章 重积分——第三节 三重积分
:fxyz)ΩΩnΔviiΔvi(ξiηiζi)fξiηiζiΔvii12ni1∑nfξiηiζiΔviΔv→0Ω(ξiηiζi)fxyz)ΩΩ∭fxyzdvΔv→0limi1∑nfξiηiζiΔvifxyz)dvΩdvdxdyd。
2025-08-28 21:31:25
249
原创 【高等数学】第十章 重积分——第二节 二重积分的计算法
:XDφ1x⩽y⩽φ2xa⩽x⩽bφ1xφ2x)[ab]DyDyxXDzfxy)∬Dfxydσxx0Ax0∫φ1x0φ2x0fx0ydy∬Dfxydσ∫ab∫φ1xφ2xfxydydx∫abdx∫φ1xφ2xfxydyyxYxyDYψ1。
2025-08-24 18:19:48
268
原创 【高等数学】第九章 多元函数微分法及其应用——第十节 最小二乘法
:ywxbi1∑nyi−wxib2abMi1∑nyi−wxib2Mwb{Mw′0Mb′0⇒⎩⎨⎧i1∑nxiwxib−yi0i1∑nwxib−yi0⎩⎨⎧wi1∑nxi2bi1∑nxi−i1∑nxiyi0wi1。
2025-08-23 08:15:37
177
原创 【高等数学】第九章 多元函数微分法及其应用——第九节 二元函数的泰勒公式
根据一元函数的麦克劳林公式,可以推得二元函数的泰勒公式。根据多元复合函数的求导法则,得到。为了利用一元泰勒公式,引入函数。
2025-08-21 22:03:55
131
原创 【PyTorch】mnist数字识别
MNIST数据集是torchvision内置的数据集之一,主要包括手写体数字的图片及相应标注下载及加载数据集查看单条数据plt.show()将数据集封装为数据加载器break...,...,
2025-08-19 21:19:39
250
原创 【高等数学】第九章 多元函数微分法及其应用——第八节 多元函数的极值及其求法
:zfxy)DP0x0y0)DP0UP0⊂DP0(xy)fxyfx0y0,fxy)(x0y0)fx0y0)(x0y0)fxy)P0(xy)fxyfx0y0,fxy)(x0y0)fx0y0)(x0y0)fxy)nnufP)DP0DP0U。
2025-08-19 19:19:12
164
原创 【高等数学】第九章 多元函数微分法及其应用——第七节 方向导数与梯度
:lxOyP0x0y0)elcosαcosβ)ll{xx0tcosαyy0tcosβt⩾0.zfxy)P0x0y0)UP0)Px0tcosαy0tcosβ)lP∈UP0)fx0tcosαy0tcosβ−fx0y0)PP0∣PP0∣ttfx0tcos。
2025-08-18 21:40:30
216
原创 【高等数学】第九章 多元函数微分法及其应用——第六节 多元函数微分学的几何应用
:D⊂RfD→Rnrftf1te1f2te2⋯fntent∈DOMtrMMΓrft)t∈DΓrft)t∈Drft)t∈DΓrft)Γft)t0r0εδt0∣t−t0∣δft)∣ft−r0∣ε,r0ft)t→t0t→t0limftr0或ft→r0t→t0.f。
2025-08-17 18:09:52
181
原创 【高等数学】第九章 多元函数微分法及其应用——第五节 隐函数的求导公式
替换系数矩阵的第一列并求行列式,对于。替换系数矩阵的第二列并求行列式。根据克拉默法则,分母。
2025-08-16 18:21:48
225
原创 【高等数学】第九章 多元函数微分法及其应用——第四节 多元复合函数的求导法则
用同样的方法,可把定理推广到复合函数的中间变量多于两个的情形。用同样的方法,可把定理推广到复合函数的中间变量多于两个的情形。求偏导数时把另一个变量视作常数,可以利用情形1的结论。,且这两个函数也具有连续偏导数,那么复合函数。的全微分形式是一样的. 这个性质叫做。具有连续偏导数,则有全微分。是自变量还是中间变量,函数。的两个偏导数都存在,且有。该情形是情形2的特例,
2025-08-15 19:35:07
211
原创 【高等数学】第九章 多元函数微分法及其应用——第三节 全微分
偏增量与偏微分根据一元函数微分学中增量与微分的关系,可得fxΔxy−fxy≈fxxyΔxfxyΔy−fxy≈fyxyΔyfxΔxy−fxy≈fxxyΔxfxyΔy−fxy≈fyxyΔy上面两式的左端分别叫做二元函数对xxx和对yyy的偏增量,而右端分别叫做二元函数对xxx和对yyy的偏微分全增量设函数zfxyzfxy在点Pxy。
2025-08-14 19:26:56
200
原创 【高等数学】第九章 多元函数微分法及其应用——第二节 偏导数
偏导数考虑多元函数关于其中一个自变量的变化率以二元函数zfxyz = f(x,y)zfxy为例,如果只有自变量xxx变化,而自变量yyy固定(即看做常量),这时它就是xxx的一元函数,这函数对xxx的导数,就称为二元函数zfxyz = f(x,y)zfxy对于xxx的偏导数,即有如下定义:设函数zfxyz = f(x,y)zfxy在点x0y0(x_0, y_0)x0y0的某一邻域内有定义,当yyy固定在y0。
2025-08-13 20:10:57
205
原创 【高等数学】第九章 多元函数微分法及其应用——第一节 多元函数的基本概念
:PE{(xy∣xy具有性质P.P0x0y0)xOyδP0x0y0)δPxy)P0δUP0δ)UP0δP∣∣PP0∣δ,P0δU˚P0δ)U˚P0δP∣0∣PP0∣δ.δUP0)P0P0U˚P0)P∈R2E⊂R2PUP)UP⊂EPEPUP)UP∩EEδ。
2025-08-11 19:11:35
211
原创 【高等数学】第八章 向量代数与空间解析几何——第六节 空间曲线及其方程
:Fxyz0和Gxyz0{Fxyz0Gxyz0.CCCxyzt⎩⎨⎧xxtyytzzt⎩⎨⎧xxstyystzzstCzxOyCxOyxOyCxOyzz0{Hxy0z0CxO。
2025-08-10 17:24:33
213
原创 【高等数学】第八章 向量代数与空间解析几何——第五节 曲面及其方程
:xyzAx2Ay2Az2DxEyFzG0,xyyzzx(x−x02y−y02z−z02R2yOzCfyz0,zzy→±x2y2f±x2y2z0yfy±x2z20LLzα0α2π)yOzLzycotαz±x2y2cotα⇔z2a2x2y2acotαxOza2x2−c2z。
2025-08-10 13:07:56
203
原创 【线性代数】线性方程组与矩阵——(3)线性方程组解的结构
设 VVV 为 nnn 维向量的集合,如果 VVV 非空,且 VVV 对于向量的加法和数乘封闭,即集合 VVV 中任意两个向量进行向量加法及数乘运算后依然归属集合 VVV,那么称集合 VVV 为向量空间。齐次线性方程组的解集 S={x∣Ax=0}S=\{\mathrm{x}|\mathrm{Ax=0}\}S={x∣Ax=0} 是一个向量空间,称为齐次线性方程组的解空间;非齐次线性方程组的解集 S={x∣Ax=b}S=\{\mathrm{x}|\mathrm{Ax=b}\}S={x∣Ax=b} 不是向量空间。
2025-08-09 21:58:14
799
原创 【线性代数】线性方程组与矩阵——行列式
{a11x1+a12x2=b1a21x1+a22x2=b2(1)\begin{cases}\tag{1}a_{11}x_1+a_{12}x_2=b_1\\a_{21}x_1+a_{22}x_2=b_2\\\end{cases}{a11x1+a12x2=b1a21x1+a22x2=b2(1)消去x2x_2x2,易得(a11a22−a12a21)x1=b1a22−a12b2(a_{11}a_{22}-a_{12}a_{21})x_1=b_1a_{22}-a_{12}b_2(a1
2025-08-09 21:55:03
847
原创 【线性代数】线性方程组与矩阵——(2)矩阵与线性方程组的解
在求解线性方程组的过程中,经常需要对线性方程进行数乘、加减、交换操作,这些操作前后的方程组是同解的,并且操作是可逆的。将这些同解变换移植到矩阵上,就得到了矩阵的3种初等变换。由行最简形矩阵可以写出线性方程组的解,反之可以写出方程组对应的行最简形矩阵,因此求解线性方程组的本质是把增广矩阵通过初等行变换化为行最简形矩阵。把矩阵初等行变换定义中的“行”换成“列”,就得到了矩阵的初等列变换。矩阵的初等行变换与初等列变换统称初等变换。总可以经过有限次初等行变换可以变成行阶梯形矩阵和行最简形矩阵。是形状最简单的矩阵。
2025-08-09 21:53:34
993
7
原创 【线性代数】线性方程组与矩阵——(1)线性方程组与矩阵初步
由m×nm\times nm×n个数aiji12m;j12n排成mmm行nnn列的数表称为mmm行nnn列矩阵,简称m×nm\times nm×n矩阵,记作Aa11a12a1na21a22a2n⋮⋮⋮am1am2amnAa11a21⋮am1a12a22⋮am2a1。
2025-08-09 21:50:43
736
原创 《答客难》东方朔
天下无害,虽有圣人,无所施才;上下和同,虽有贤者,无所立功。天有常度,地有常形,君子有常行;君子道其常,小人计其功。举大德,赦小过,无求备于一人之义也。水至清则无鱼,人至察则无徒。礼义之不愆,何恤人之言?苟能修身,何患不荣!
2025-08-09 13:16:26
227
原创 【高等数学】第八章 向量代数与空间解析几何——第三节 平面及其方程
:SFxyz0SSSSS1S2Fxyz0Gxyz0CC{Fxyz0Gxyz0.
2025-08-08 20:59:48
231
原创 【高等数学】第八章 向量代数与空间解析几何——第二节 数量积 向量积 混合积
叉积的概念来自物理学(特别是力学中计算力矩)的需求。点积的概念来自物理学(特别是力学中计算功)的需求。根据点积的分配律和混合积的轮换性得证。从此处可以发现坐标系采用右手系的优势。
2025-08-07 19:56:17
398
原创 【高等数学】第八章 向量代数与空间解析几何——第一节 向量及其线性运算
:ABAb00abOOAaOBbπ∠AOBφ∠AOB0≤φ≤πab⟨ab⟩⟨ba⟩⟨ab⟩φabπ⟨ab⟩0πaba∥b⟨ab⟩2πaba⊥bπkk≥。
2025-08-04 22:34:05
377
原创 【高等数学】第七章 微分方程——第九节 欧拉方程
:xnynp1xn−1yn−1⋯pn−1xy′pnyfx)p1p2⋯pnx0xettlnxx0x−ettln−x)dxdydx2d2ydx3d3ydtdy⋅dxdtx1dtdyx21dt2d2y−dtdyx31dt3d3y−3d。
2025-08-03 22:23:00
167
原创 【高等数学】第七章 微分方程——第七节 常系数齐次线性微分方程
而特征方程的每一个根都对应着通解中的一项,且每项各含一个任意常数,这样就得到。阶常系数齐次线性微分方程的通解。
2025-08-02 19:53:52
369
原创 【高等数学】第七章 微分方程——第四节 一阶线性微分方程
:dxdyPxyQx)yQx≡0Qx≡0Qx0dxdyPxy0ln∣y∣−∫PxdxC1yCe−∫PxdxuCyue−∫Pxdxdxdyu′e−∫Pxdx−uPxe−∫PxdxdxdyPxyQx)u′e−∫Pxdx−uPxe−∫PxdxPxue−∫Pxdx。
2025-07-30 19:35:38
219
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人