上一节:【高等数学】第十章 重积分——第五节 含参变量的积分
总目录:【高等数学】 目录
1. 对弧长的曲线积分的概念与性质
- 曲线形构件的质量
- 问题描述
假设曲线形构件所处的位置在 x O y xOy xOy 面内的一段曲线弧 L L L 上,它的端点是 A 、 B A、B A、B,在 L L L 上任一点 ( x , y ) (x, y) (x,y) 处,它的线密度为 μ ( x , y ) μ(x, y) μ(x,y)。
求这构件的质量 m m m。 - 解法
用 L L L 点上的 M 1 , M 2 , ⋯ , M n − 1 M_1, M_2, \cdots, M_{n-1} M1,M2,⋯,Mn−1 把 L L L 分成 n n n 个小段,在线密度连续变化的前提下,只要这小段很短,就可以用这小段上任一点 ( ξ i , η i ) (\xi_i, \eta_i) (ξi,ηi) 处的线密度代替这小段上其他各点处的线密度,从而得到这小段构件的质量的近似值为 μ ( ξ i , η i ) Δ s i , \mu(\xi_i, \eta_i) \Delta s_i, μ(ξi,ηi)Δsi,其中 Δ s i \Delta s_i Δsi 表示 M i − 1 M i ^ \widehat{M_{i-1}M_i} Mi−1Mi 的长度,于是整个曲线形构件的质量为 m ≈ ∑ i = 1 n μ ( ξ i , η i ) Δ s i . m\approx\sum_{i=1}^{n} \mu(\xi_i, \eta_i) \Delta s_i. m≈i=1∑nμ(ξi,ηi)Δsi.用 λ \lambda λ 表示 n n n 个小弧段的最大长度。为了计算 m m m 的精确值,取上式右端之和当 λ → 0 \lambda \to 0 λ→0 时的极限,从而得到 m = lim λ → 0 ∑ i = 1 n μ ( ξ i , η i ) Δ s i m = \lim_{\lambda \to 0} \sum_{i=1}^{n} \mu(\xi_i, \eta_i) \Delta s_i m=λ→0limi=1∑nμ(ξi,ηi)Δsi
- 问题描述
- 对弧长的曲线积分定义
L L L 为 x O y xOy xOy 面内的一条光滑曲线弧,函数 f ( x , y ) f(x,y) f(x,y) 在 L L L 上有界。
在 L L L 上任意插入一点 M 1 M_1 M1, M 2 M_2 M2, ⋯ \cdots ⋯, M n M_n Mn,将 L L L 分成 n n n 个段。
第 i i i 个小段的长度为 Δ s i \Delta s_i Δsi, ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi) 为第 i i i 个小段上任意选取的一点,作乘积 f ( ξ i , η i ) Δ s i f(\xi_i,\eta_i)\Delta s_i f(ξi,ηi)Δsi( i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,⋯,n),并作和 ∑ i = 1 n f ( ξ i , η i ) Δ s i \sum\limits_{i=1}^{n}f(\xi_i,\eta_i)\Delta s_i i=1∑nf(ξi,ηi)Δsi,
如果当各小弧段的长度的最大值 λ → 0 \lambda\to0 λ→0 时,这和的极限总存在,并且与曲线弧 L L L 的分法及点 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi) 的取法无关,
那么称此极限为函数 f ( x , y ) f(x,y) f(x,y) 在曲线弧 L L L 上对弧长的曲线积分或第一类曲线积分,记作 ∫ L f ( x , y ) d s \displaystyle\int_{L}f(x,y)\mathrm{d}s ∫Lf(x,y)ds,即 ∫ L f ( x , y ) d s = lim λ → 0 ∑ i = 1 n { f ( ξ i , η i ) } Δ s i \int\limits_{L}f(x,y)\mathrm{d}s=\lim\limits_{\lambda\to0}\sum\limits_{i=1}^{n}\{f(\xi_i,\eta_i)\}\Delta s_i L∫f(x,y)ds=λ→0limi=1∑n{f(ξi,ηi)}Δsi其中 f ( x , y ) f(x,y) f(x,y) 叫做被积函数, L L L 叫做积分弧段。 - 对弧长的曲线积分存在
当 f ( x , y ) f(x,y) f(x,y)在光滑曲线弧 L L L上连续时,对弧长的曲线积分 ∫ L f ( x , y ) d s \displaystyle\int_{L}f(x,y)\mathrm{d}s ∫Lf(x,y)ds是存在的 - 推广到三维
函数 f ( x , y , z ) f(x,y,z) f(x,y,z) 在曲线弧 Γ \Gamma Γ 上对弧长的曲线积分 ∫ Γ f ( x , y , z ) d s = lim λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ s i . \int_{\Gamma} f(x,y,z) \, \mathrm{d}s = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta s_i. ∫Γf(x,y,z)ds=λ→0limi=1∑nf(ξi,ηi,ζi)Δsi. - 分段光滑
如果 L L L(或 Γ \Gamma Γ)是分段光滑的,规定函数在 L L L(或 Γ \Gamma Γ)上的曲线积分等于函数在光滑各段上的曲线积分之和。即 ∫ L 1 + L 2 f ( x , y ) d s = ∫ L 1 f ( x , y ) d s + ∫ L 2 f ( x , y ) d s . \int_{L_1 + L_2} f(x, y) \, \mathrm{d}s = \int_{L_1} f(x, y) \, \mathrm{d}s + \int_{L_2} f(x, y) \, \mathrm{d}s. ∫L1+L2f(x,y)ds=∫L1f(x,y)ds+∫L2f(x,y)ds. - 闭曲线
如果 L L L是闭曲线,那么函数 f ( x , y ) f(x,y) f(x,y)在闭曲线 L L L上对弧长的曲线积分记为 ∮ L f ( x , y ) d s \displaystyle\oint_{L}f(x,y)\mathrm{d}s ∮Lf(x,y)ds - 对弧长的曲线积分性质
- 线性性
设 α , β \alpha, \beta α,β 为常数,则 ∫ L [ α f ( x , y ) + β g ( x , y ) ] d s = α ∫ L f ( x , y ) d s + β ∫ L g ( x , y ) d s . \int_L [\alpha f(x, y) + \beta g(x, y)] \mathrm{d}s = \alpha \int_L f(x, y) \mathrm{d}s + \beta \int_L g(x, y) \mathrm{d}s. ∫L[αf(x,y)+βg(x,y)]ds=α∫Lf(x,y)ds+β∫Lg(x,y)ds. - 叠加性
若积分弧段 L L L可分成两段光滑曲线弧 L 1 L_{1} L1和 L 2 L_{2} L2,则 ∫ L f ( x , y ) d s = ∫ L 1 f ( x , y ) d s + ∫ L 2 f ( x , y ) d s . \int_{L}f(x,y)\mathrm{d}s=\int_{L_{1}}f(x,y)\mathrm{d}s+\int_{L_{2}}f(x,y)\mathrm{d}s. ∫Lf(x,y)ds=∫L1f(x,y)ds+∫L2f(x,y)ds. - 积分比较
设在L上 f ( x , y ) ⩽ g ( x , y ) f(x,y)\leqslant g(x,y) f(x,y)⩽g(x,y),则 ∫ L f ( x , y ) d s ⩽ ∫ L g ( x , y ) d s . \int_{L}f(x,y)\mathrm{d}s\leqslant\int_{L}g(x,y)\mathrm{d}s. ∫Lf(x,y)ds⩽∫Lg(x,y)ds.特别地,有 ∣ ∫ L f ( x , y ) d s ∣ ⩽ ∫ L ∣ f ( x , y ) ∣ d s . \left|\int_{L}f(x,y)\mathrm{d}s\right|\leqslant\int_{L}|f(x,y)|\mathrm{d}s. ∫Lf(x,y)ds ⩽∫L∣f(x,y)∣ds.
- 线性性
2. 对弧长的曲线积分的计算法
- 参数方程
设 f ( x , y ) f(x,y) f(x,y) 在曲线弧 L L L 上有定义且连续, L L L 的参数方程为 { x = φ ( t ) , y = ψ ( t ) , ( α ⩽ t ⩽ β ) , \begin{cases} x = \varphi(t),\\ y = \psi(t), \end{cases} (\alpha \leqslant t \leqslant \beta), {x=φ(t),y=ψ(t),(α⩽t⩽β),若 φ ( t ) , ψ ( t ) \varphi(t), \psi(t) φ(t),ψ(t) 在 [ α , β ] [\alpha, \beta] [α,β] 上具有一阶连续导数,且 φ ′ 2 ( t ) + ψ ′ 2 ( t ) ≠ 0 \varphi'^2(t) + \psi'^2(t) \neq 0 φ′2(t)+ψ′2(t)=0,
则曲线积分 ∫ L f ( x , y ) d s \displaystyle\int_L f(x,y) \mathrm{d}s ∫Lf(x,y)ds 存在,且 ∫ L f ( x , y ) d s = ∫ α β f ( φ ( t ) , ψ ( t ) ) φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t ( α < β ) . \int_L f(x,y) \mathrm{d}s = \int_\alpha^\beta f(\varphi(t), \psi(t)) \sqrt{\varphi'^2(t) + \psi'^2(t)} \mathrm{d}t \quad (\alpha < \beta). ∫Lf(x,y)ds=∫αβf(φ(t),ψ(t))φ′2(t)+ψ′2(t)dt(α<β).根据弧微分的结论有, d s = φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t \mathrm{d}s= \sqrt{\varphi'^2(t) + \psi'^2(t)} \mathrm{d}t ds=φ′2(t)+ψ′2(t)dt
s ( x ) s(x) s(x)是单调递增函数,即 α < β \alpha<\beta α<β - 显函数
-
y
=
ψ
(
x
)
(
x
0
⩽
x
⩽
X
)
y=\psi(x) \quad (x_0 \leqslant x \leqslant X)
y=ψ(x)(x0⩽x⩽X)
∫ L f ( x , y ) d s = ∫ x 0 X f [ x , ψ ( x ) ] 1 + ψ ′ 2 ( x ) d x ( x 0 < X ) . \int_{L}f(x,y)\mathrm{d}s=\int_{x_0}^{X}f\left[x,\psi(x)\right]\sqrt{1+\psi^{'2}(x)}\mathrm{d}x\quad(x_{0}<X). ∫Lf(x,y)ds=∫x0Xf[x,ψ(x)]1+ψ′2(x)dx(x0<X). -
x
=
φ
(
y
)
(
y
0
⩽
y
⩽
Y
)
x = \varphi(y) \quad (y_0 \leqslant y \leqslant Y)
x=φ(y)(y0⩽y⩽Y)
∫ L f ( x , y ) d s = ∫ y 0 Y f [ φ ( y ) , y ] 1 + φ ′ ( y ) 2 d y ( y 0 < Y ) . \int_{L} f(x, y) \mathrm{d}s = \int_{y_0}^{Y} f[\varphi(y), y] \sqrt{1 + \varphi'(y)^2} \mathrm{d}y \quad (y_0 < Y). ∫Lf(x,y)ds=∫y0Yf[φ(y),y]1+φ′(y)2dy(y0<Y).
-
y
=
ψ
(
x
)
(
x
0
⩽
x
⩽
X
)
y=\psi(x) \quad (x_0 \leqslant x \leqslant X)
y=ψ(x)(x0⩽x⩽X)
- 推广到三维
空间曲线弧 Γ \Gamma Γ 由参数方程 x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) ( α ⩽ t ⩽ β ) x = \varphi(t), y = \psi(t), z = \omega(t) \quad (\alpha \leqslant t \leqslant \beta) x=φ(t),y=ψ(t),z=ω(t)(α⩽t⩽β)给出,这时有 ∫ α β f ( x , y , z ) d s = ∫ α β f ( φ ( t ) , ψ ( t ) , ω ( t ) ) φ ′ ( t ) 2 + ψ ′ ( t ) 2 + ω ′ ( t ) 2 d t \int_{\alpha}^{\beta} f(x, y, z) \mathrm{d}s = \int_{\alpha}^{\beta} f(\varphi(t), \psi(t), \omega(t)) \sqrt{\varphi'(t)^2 + \psi'(t)^2 + \omega'(t)^2} \mathrm{d}t ∫αβf(x,y,z)ds=∫αβf(φ(t),ψ(t),ω(t))φ′(t)2+ψ′(t)2+ω′(t)2dt