- 博客(125)
- 收藏
- 关注

翻译 Temporal-Frequency Masked Autoencoders for Time Series Anomaly Detection
摘要:在可观测时代,大量的时间序列数据被收集来监控目标系统的运行状态,其中异常检测有助于识别与其余观测值显着不同的观测值,对于实现价值提取至关重要 从这样的数据。虽然现有的基于重建的方法在没有标记数据的情况下表现出了良好的检测能力,但它们仍然遇到异常时间的训练偏差和时间序列内的分布变化问题。为了解决这些问题,我们提出了一种简单而有效的时频屏蔽自动编码器(TFMAE),通过对比标准来检测时间序列中的异常。
2024-09-11 14:57:32
1229

翻译 PAFormer: Anomaly Detection of Time Series With Parallel-Attention Transformer
摘要:时间序列异常检测是一项具有重大影响的关键任务,因为它在数据挖掘和质量管理领域发挥着关键作用。当前的异常检测方法通常基于重建或预测算法,因为这些方法能够学习压缩数据表示和模型时间依赖性。然而,大多数方法依赖于学习正态分布模式,这在现实世界的工程应用中很难实现。此外,现实世界的时间序列数据高度不平衡,异常数据严重缺乏代表性样本,这可能导致模型学习失败。在本文中,我们提出了一种新颖的端到端无监督框架,称为并行注意变换器(PAFormer),它通过对时间序列的全局特征和局部模式进行建模来区分异常。
2024-09-09 20:35:33
850

翻译 SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion
多元时间序列预测在金融、交通管理、能源和医疗保健等各个领域发挥着至关重要的作用。最近的研究强调了渠道独立性在抵抗分布漂移方面的优势,但忽视了渠道相关性,限制了进一步的增强。有几种方法利用注意力或混合器等机制通过捕获通道相关性来解决这个问题,但它们要么引入过多的复杂性,要么过于依赖相关性来在分布漂移下获得令人满意的结果,特别是在通道数量较多的情况下。
2024-09-09 10:43:05
1254

翻译 Breaking the Time-Frequency Granularity Discrepancy in Time-Series Anomaly Detection
鉴于时间序列异常检测(TSAD)取得的显着进步,最近的重点已经放在利用频域以及时域,以解决精确检测模式异常的困难。然而,就异常分数而言,频域的窗口粒度与时域的数据点粒度本质上不同。由于这种差异,频域中的异常信息尚未被充分利用,以充分发挥其TSAD的潜力。在本文中,我们提出了一个TSAD框架,双TF,同时使用时域和频域,同时打破了时间-频率粒度的差异。为此,我们的框架采用嵌套滑动窗口,外部和内部窗口分别负责时域和频域,并对齐两个域的异常分数。由于对齐分数的高分辨率,可以更精确地识别模式异常的边界。
2024-07-21 17:11:04
658

翻译 SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware M
基于 Transformer 的架构在自然语言处理和计算机视觉方面取得了突破性的性能,但在多元长期预测方面仍然不如更简单的线性基线。为了更好地理解这种现象,我们首先研究一个玩具线性预测问题,我们表明变压器尽管具有很高的表达能力,但无法收敛到其真正的解决方案。我们进一步确定变压器的注意力是造成这种低泛化能力的原因。基于这一见解,我们提出了一种浅层轻量级变压器模型,当通过锐度感知优化进行优化时,该模型成功地避免了不良的局部最小值。我们凭经验证明这一结果可以扩展到所有常用的现实世界多元时间序列数据集。
2024-07-15 15:00:56
678
翻译 Adaptive Memory Networks With Self-Supervised Learning for Unsupervised Anomaly Detection
摘要无监督异常检测的目的是通过对正常数据的训练,建立模型来有效地检测未知的异常。尽管基于重构的方法已经取得了丰硕的成果,但由于两个关键问题,其泛化能力受到限制。首先,训练数据集只包含正态模式,这限制了模型的泛化能力。其次,现有模型学习到的特征表示通常缺乏代表性,这妨碍了保持正常模式多样性的能力。提出一种基于自适应记忆网络的无监督异常检测算法AMSL(Adaptive Memory Network with Self-supervised Learning)。
2024-10-26 19:50:42
374
翻译 Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly D
深度自动编码器已广泛用于异常检测。在正常数据上进行训练,期望自动编码器对异常输入产生比正常输入更高的重构误差,这被用作识别异常的标准。然而,这个假设在实践中并不总是成立。据观察,有时自动编码器“泛化”得很好,以至于它也可以很好地重建异常,从而导致异常的漏检。为了减轻基于自动编码器的异常检测器的这一缺点,我们建议使用内存模块来增强自动编码器,并开发一种改进的自动编码器,称为内存增强自动编码器,即 MemAE。给定输入,MemAE 首先从编码器获取编码,然后将其用作查询来检索最相关的记忆项以进行重建。
2024-10-19 11:04:10
252
翻译 Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topologi
时间序列中的无监督异常检测在工业应用中至关重要,因为它显着减少了手动干预的需要。多元时间序列由于其特征和时间维度而提出了复杂的挑战。传统方法使用图神经网络 (GNN) 或 Transformer 来分析空间,而使用 RNN 来建模时间依赖性。这些方法狭隘地关注一维或进行粗粒度的特征提取,这对于以复杂关系和动态变化为特征的大型数据集来说可能是不够的。本文介绍了一种基于增强图注意力网络 (GAT) 的新颖时间模型,用于多元时间序列异常检测,称为 TopoGDN。我们的模型从细粒度的角度分析时间和特征维度。
2024-10-19 10:02:56
585
翻译 A robust multi-scale feature extraction framework with dual memory module for multivariate time seri
尽管现有的基于重建的多元时间序列异常检测 (MTSAD) 方法已显示出先进的性能,但大多数方法都假设训练数据是干净的。当面对训练数据中的噪声或污染时,他们也可以很好地重建异常,削弱正常与异常之间的区别。一些基于概率生成的方法由于其隐含的对噪声的鲁棒结构而被用来解决这个问题,但训练过程和异常泛化的抑制并不稳定。最近提出的基于记忆模块的显式方法也会牺牲正常模式的重建效果,导致性能提升有限。此外,大多数现有的MTSAD方法使用单个固定长度窗口进行输入,这削弱了它们提取长期依赖性的能力。
2024-10-18 09:58:02
286
翻译 Contrastive Time-series Anomaly Detection
摘要:对比学习除了在表示学习方面取得成功之外,在图像异常检测方面也很有效。尽管对比学习在很大程度上取决于数据增强方法,但用于时间序列异常检测的时间序列数据增强尚未得到充分研究。此外,尽管时间序列数据共享时间上下文,但现有的对比损失与时间相关的样本进行对比,其中在时间序列数据上观察到异常检测性能恶化。在此,我们提出了对比多元时间序列异常检测(CTAD),这是一种多元时间序列异常检测框架,它通过将一类学习方案纳入基于精心设计的时间序列数据增强的对比损失中来解决这些挑战。
2024-10-17 09:27:45
400
翻译 Graph Contrastive Learning with Augmentations
图结构数据的可泛化、可迁移和鲁棒的表示学习仍然是当前图神经网络(GNN)的一个挑战。与针对图像数据的卷积神经网络 (CNN) 开发的技术不同,GNN 对自监督学习和预训练的探索较少。在本文中,我们提出了一种图对比学习(GraphCL)框架,用于学习图数据的无监督表示。我们首先设计四种类型的图增强来合并各种先验。然后,我们在四种不同的设置中系统地研究图增强的各种组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。
2024-10-09 19:56:48
378
翻译 A MASKED ATTENTION NETWORK WITH QUERY SPARSITY MEASUREMENT FOR TIME SERIES ANOMALY DETECTION
摘要:时间序列异常检测近年来得到了广泛的研究。先前的研究重点是用于特征学习的点特征和成对关联或基于先验知识设计的异常分数。然而,这些方法无法充分学习复杂的异常动态信息,只能识别有限类别的异常。我们提出了带有查询稀疏性测量的屏蔽注意力网络(MAN-QSM)来解决上述挑战。该模型使用两种先验知识,从成对关联和序列级信息两个角度充分利用正常点和异常点之间的差异。我们设计了异常屏蔽机制来配合训练策略来放大正常点和异常点之间的差异。
2024-09-23 08:01:51
296
翻译 Correlation-Aware Spatial–Temporal Graph Learning for Multivariate Time-Series Anomaly Detection
摘要:多变量时间序列异常检测在许多应用中至关重要,包括零售、运输、电网和水处理厂。解决这个问题的现有方法大多采用不能很好地捕捉非线性关系的统计模型,或者不能明确学习非线性关系的传统深度学习(DL)模型[例如,卷积神经网络(CNN)和长短期记忆(LSTM)] 变量之间的成对相关性。为了克服这些限制,我们提出了一种新的方法,即相关感知时空图学习(称为 CST-GL),用于时间序列异常检测。
2024-09-22 21:02:43
619
翻译 FITS: MODELING TIME SERIES WITH 10k PARAME- TERS
在本文中,我们介绍了 FITS,一种轻量级但功能强大的时间序列分析模型。与直接处理原始时域数据的现有模型不同,FITS 的运行原理是可以通过复杂频域中的插值来操纵时间序列,从而实现与时间序列预测和异常检测任务的最先进模型相当的性能。值得注意的是,FITS 通过大约 10k 参数的精简配置来实现这一目标,使其非常适合边缘设备,并为广泛的应用铺平了道路。代码可用:https://github.com/VEWOXIC/FITS。
2024-09-12 15:08:10
1098
翻译 PATE: Proximity-Aware Time Series Anomaly Evaluation
评估时间序列数据中的异常检测算法至关重要,因为不准确可能会导致在实时分析和数据驱动策略至关重要的各个领域中做出有缺陷的决策。传统的性能指标假设独立同分布数据,无法捕获复杂的时间动态和时间序列异常的特定特征,例如早期和延迟检测。我们引入了邻近感知时间序列异常评估(PATE),这是一种新颖的评估指标,它结合了预测和异常间隔之间的时间关系。PATE 使用基于邻近度的加权来考虑异常间隔周围的缓冲区,从而能够对检测进行更详细、更明智的评估。使用这些权重,PATE 计算精确率和召回率曲线下面积的加权版本。
2024-09-09 14:33:39
265
原创 Disentangled Anomaly Detection For Multivariate Time Series
旨在识别异常模式的时间序列异常检测最近引起了很多关注。然而,异常数据和正常数据的表示很难区分,因为它们通常是纠缠在一起的。近年来,基于变分自动编码器(VAE)的解纠缠理论在机器学习中展现出了巨大的潜力,并在计算机视觉和自然语言处理方面取得了巨大的成功。在本文中,我们提出了一种新颖的解缠结异常检测方法,该方法采用基于 VAE 的解缠结网络进行多元时间序列中的异常检测。所提出的方法在连续表示空间中学习高质量的解纠缠潜在因子,以方便从正常数据中识别异常。
2024-09-08 14:59:56
1362
翻译 PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection
随着移动传感技术的普及,各个领域产生和积累了大量的时间序列数据,推动了大量的实际应用。在这种情况下,时间序列异常检测实际上很重要。它致力于从时间序列中的正态样本分布中识别出异常样本。现有方法通常假设所有时间序列都在中心位置可用。然而,由于各种边缘设备的部署,我们正在见证时间序列的去中心化收集。为了弥合去中心化时间序列数据和集中式异常检测算法之间的差距,随着隐私问题的日益增加,我们提出了一种名为 PeFAD 的参数高效联合异常检测框架。
2024-09-07 15:29:50
920
翻译 CutAddPaste: Time Series Anomaly Detection by Exploiting Abnormal Knowledge
由于异常的稀有性和样本类别的不平衡,检测时间序列异常极其复杂,这通常会导致异常标记成本高昂且具有挑战性。大多数现有方法很大程度上依赖于正态性假设,忽略了标记的异常样本。虽然基于异常假设的方法可以结合异常的先验知识来在训练分类器中进行数据增强,但所采用的随机或粗粒度增强方法仅关注逐点异常并且缺乏前沿领域知识,使得它们不太可能获得更好的性能。本文介绍了 CutAddPaste,这是一种基于异常假设的新颖方法,用于检测时间序列异常。它主要采用数据增强策略,通过尽可能多地利用异常的先验知识来生成伪异常。
2024-09-06 10:40:19
524
翻译 Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency
由于预训练和目标域之间可能存在不匹配,例如时间动态的变化、快速演变的趋势以及长程和短循环效应,时间序列的预训练提出了独特的挑战,这可能导致效果不佳 下游表现。虽然域适应方法可以减轻这些变化,但大多数方法需要直接来自目标域的示例,这使得它们对于预训练来说不是最佳的。为了应对这一挑战,方法需要适应具有不同时间动态的目标域,并且能够在预训练期间不看到任何目标示例的情况下做到这一点。相对于其他模态,在时间序列中,我们期望同一示例的基于时间和基于频率的表示在时频空间中靠近在一起。
2024-09-01 20:47:37
374
翻译 TFAD: A Decomposition Time Series Anomaly Detection Architecture with Time-Frequency Analysis
时间序列的异常检测是一个具有挑战性的问题,由于复杂的时间依赖性和有限的标签数据。虽然已经提出了一些包括传统模型和深度模型的算法,但大多数算法主要集中在时域建模上,没有充分利用时间序列数据的频域信息。在本文中,我们提出了一个基于时频分析的时间序列异常检测模型,或简称TFAD,利用时域和频域的性能改善。此外,我们在设计的时频架构中加入时间序列分解和数据扩充机制,以进一步提升性能和可解释性。在广泛使用的基准数据集上的实证研究表明,我们的方法在单变量和多变量时间序列异常检测任务中获得了最新的性能。
2024-08-29 09:44:37
675
翻译 Perturbation Guiding Contrastive Representation Learning for Time Series Anomaly Detection
时间序列异常检测是各个领域应用的一项关键任务。由于标注的挑战,自监督方法已成为近年来时间序列异常检测的主流方法。然而,目前的对比方法将数据扰动分为二进制类,正常或异常,这缺乏明确的不同扰动方法的具体影响。受“扰动类型误分类概率越高,异常概率越高”的假设启发,提出了PCRTA方法,首先设计扰动分类器学习数据扰动的伪标签。此外,针对对比学习中的“类崩溃问题”,通过引入可学习的扰动分类网络,提出了一种扰动引导的正负样本选择策略。
2024-08-26 15:04:43
300
翻译 Remembering Normality: Memory-guided Knowledge Distillation for Unsupervised Anomaly Detection
知识提炼(KD)是无监督异常检测(AD)中的一个重要研究方向。假设学生在训练数据中不断地产生典型模式的表示,称为“正态性,”教师和学生模型之间的表示差异被识别为异常。然而,它却存在着“常态遗忘”问题。在没有异常的数据上训练,学生仍然很好地重构了异常的异常表示,并且对训练中也出现的正态数据中的精细模式很敏感。为了缓解这个问题,我们引入了一个新的记忆引导的知识提取(MemKD)框架,该框架在检测异常时自适应地调整学生特征的正态性。
2024-08-25 13:57:17
412
翻译 SIN: Selective and Interpretable Normalization for Long-Term Time Series Forecasting
在实际应用中,时间序列数据经常表现出非平稳性,统计数据会随时间变化。这种可变性削弱了深度学习模型的预测准确性,这些模型是根据历史数据训练的,但部署用于未来预测。缓解此问题的常用方法包括对数据进行归一化以抵消统计漂移,然后对预测进行反归一化。然而,现有的方法通常采用启发式归一化技术,该技术不能完全说明序列的独特特性。我们的文件解决了这方面的关键问题:哪些统计数据应该删除和恢复?我们认为,选择的归一化统计量应同时表现出局部不变性和全局变异性,以确保其正确性和有用性。
2024-08-22 17:59:40
456
翻译 A DECODER-ONLY FOUNDATION MODEL FOR TIME-SERIES FORECASTING
受自然语言处理(NLP)大型语言模型的最新进展的启发,我们设计了一个时间序列基础模型,用于预测其在各种公共数据集上的开箱即用的零射击性能接近每个数据集的最先进监督预测模型的准确性。我们的模型是基于预训练解码器风格的注意力模型与输入修补,使用一个大型的时间序列语料库,包括真实世界和合成数据集。在一组不同的以前看不见的预测数据集上进行的实验表明,该模型可以在不同的领域、预测范围和时间粒度上产生准确的零预测。
2024-08-22 09:35:18
556
翻译 Dynamic Multi-Network Mining of Tensor Time Series
时间序列的子序列聚类是数据挖掘中的一项重要任务,而解释聚类结果也是至关重要的,因为我们通常不具有数据的先验知识。因此,给定一个包含多个模式(包括时间戳)的张量时间序列的大集合,我们如何实现张量时间序列的子序列聚类并提供可解释的见解?本文提出了一种新的动态多网络挖掘方法–动态多网络挖掘(Dynamic Multi-network Mining,DMM),该方法将一个张量时间序列转换为一组不同长度(即,簇),其特征在于依赖网络受1-范数约束。我们的方法具有以下属性。
2024-07-18 10:48:16
132
翻译 Irregular Multivariate Time Series Forecasting: A Transformable Patching Graph Neural Networks Appro
不规则多元时间序列 (IMTS) 的预测对于医疗保健、生物力学、气候科学和天文学等众多领域至关重要。尽管现有研究通过常微分方程解决时间序列中的不规则性,但对异步 IMTS 之间的相关性进行建模的挑战仍未得到充分探索。为了弥补这一差距,本研究提出了可变换补丁图神经网络(T-PATCHGNN),它将每个单变量不规则时间序列转换为一系列可变换补丁,其中包含具有统一时间分辨率的不同数量的观测值。它无缝地促进本地语义捕获和时间序列间相关建模,同时避免对齐的 IMTS 中的序列长度爆炸。
2024-07-17 15:42:21
1007
翻译 Learning Optimal Projection for Forecast Reconciliation of Hierarchical Time Series
分层时间序列预测不仅需要预测准确性,还需要一致性,即预测在整个层次结构中适当地相加。最近的文献表明,通过投影进行协调优于先前的方法,例如自上而下或自下而上的方法。与预先指定投影矩阵(例如正交)的现有工作不同,我们研究从数据中学习最佳倾斜投影以对分层时间序列进行一致预测的问题。除了保持无偏性的特性之外,倾斜投影还隐式地考虑了层次结构,并为各个时间序列分配了不同的权重,与平等对待基本预测误差的正交投影相比,具有显着的适应性。我们研究两大类投影,即欧几里得投影和一般斜投影。
2024-07-15 20:26:49
285
翻译 Multi-Patch Prediction: Adapting LLMs for Time Series Representation Learning
在这项研究中,我们提出了 aLLM4TS,这是一种创新框架,适用于时间序列表示学习的大型语言模型 (LLM)。我们方法的核心是,我们将时间序列预测重新视为一种自我监督的多块预测任务,与传统的对比学习或掩模和重建方法相比,它可以更有效地捕获块表示中的时间动态。我们的策略包括两个阶段的培训:(i)。对各种时间序列数据集进行因果连续预训练阶段,锚定于下一个补丁预测,有效地将 LLM 功能与复杂的时间序列数据同步;(二). 在目标时间序列上下文中对多补丁预测进行微调。
2024-07-15 16:39:05
552
翻译 Fredformer: Frequency Debiased Transformer for Time Series Forecasting
Transformer 模型在时间序列预测方面表现出了领先的性能。然而,在一些复杂的场景中,它往往会学习数据中的低频特征而忽略高频特征,表现出频率偏差。这种偏差导致模型无法准确捕获重要的高频数据特征。在本文中,我们进行了实证分析来理解这种偏差,并发现频率偏差是由于模型不成比例地关注具有较高能量的频率特征造成的。根据我们的分析,我们制定了这种偏差并提出了 Fredformer,这是一个基于 Transformer 的框架,旨在通过跨不同频段平等地学习特征来减轻频率偏差。
2024-07-14 14:49:22
1246
翻译 GAFORMER: ENHANCING TIMESERIES TRANSFORM- ERS THROUGH GROUP-AWARE EMBEDDINGS
分析多元时间序列在许多领域中至关重要,但由于复杂的通道间关系和非平稳动态,在此类数据集中学习稳健且可概括的表示仍然具有挑战性。在本文中,我们介绍了一种学习数据自适应位置嵌入的新方法,将学习的空间和时间结构合并到变压器架构中。我们的框架引入了组令牌并构建了一个特定于实例的组嵌入(GE)层,该层将输入令牌分配给选定数量的学习组令牌,从而将结构信息合并到学习过程中。在此基础上,我们提出了一种新颖的架构,即组感知变压器(GAFormer),它集成了空间和时间组嵌入,以在各种时间序列分类和回归任务上实现最先进的性能。
2024-07-12 15:26:34
489
翻译 HDMixer: Hierarchical Dependency with Extendable Patch for Multivariate Time Series Forecasting
多元时间序列(MTS)预测已广泛应用于各种场景。最近,一些方法采用修补来增强局部语义并提高模型性能。然而,长度固定的补丁很容易丢失时间边界信息,例如完整的峰值和周期。此外,现有方法主要侧重于对补丁之间的长期依赖性进行建模,而很少关注其他维度(例如补丁内的短期依赖性以及跨变量补丁之间的复杂交互)。为了应对这些挑战,我们提出了一种纯基于 MLP 的 HDMixer,旨在获取具有更丰富语义信息的补丁并有效地建模分层交互。
2024-07-12 10:52:25
1004
翻译 PERIODICITY DECOUPLING FRAMEWORK FOR LONG- TERM SERIES FORECASTING
基于卷积神经网络 (CNN) 和 Transformer 的方法最近在时间序列预测方面取得了重大进展,它们擅长对局部时间变化进行建模或捕获长期依赖性。然而,现实世界的时间序列通常包含复杂的时间模式,这使得主要关注直接从一维时间序列进行时间变化建模的现有方法面临挑战。基于时间序列的内在周期性,我们提出了一种新颖的周期性解耦框架(PDF)来捕获解耦序列的二维时间变化以进行长期序列预测。我们的PDF主要由三个部分组成:多周期解耦块(MDB)、对偶变化建模块(DVMB)和变化聚合块(VAB)。
2024-07-11 20:03:35
709
翻译 Graph-Aware Contrasting for Multivariate Time-Series Classification
对比学习作为一种自我监督学习范式,在多元时间序列(MTS)分类中变得流行。它确保未标记样本的不同视图之间的一致性,然后学习这些样本的有效表示。现有的对比学习方法主要侧重于通过时间增强和对比技术实现时间一致性,旨在保留 MTS 数据的时间模式免受扰动。然而,他们忽视了空间一致性,这需要单个传感器及其相关性的稳定性。由于 MTS 数据通常源自多个传感器,因此确保空间一致性对于 MTS 数据对比学习的整体性能至关重要。因此,我们提出图感知对比来实现 MTS 数据的空间一致性。
2024-07-11 16:10:11
280
翻译 Unsupervised Time-Series Representation Learning with Iterative Bilinear Temporal-Spectral Fusion
无监督/自监督时间序列表示学习由于其复杂的动态和稀疏的注释而成为一个具有挑战性的问题。现有的工作主要采用对比学习的框架和基于时间的增强技术来采样正负样本进行对比训练。然而,他们大多使用从时间切片衍生的段级增强,这可能会由于全局上下文的丢失而带来采样偏差和漏报的错误优化。此外,他们都没有注意将光谱信息纳入特征表示中。在本文中,我们提出了一个统一的框架,即双线性时谱融合(BTSF)。具体来说,我们首先利用实例级增强,在整个时间序列上进行简单的 dropout,以最大限度地捕获长期依赖关系。
2024-07-09 16:11:29
208
1
翻译 WFTNET: EXPLOITING GLOBAL AND LOCAL PERIODICITY IN LONG-TERM TIME SERIES FORECASTING
最近基于 CNN 和 Transformer 的模型尝试利用频率和周期性信息进行长期时间序列预测。然而,大多数现有工作都是基于傅里叶变换,无法捕获细粒度和局部频率结构。在本文中,我们提出了一种用于长期时间序列预测的小波傅立叶变换网络(WFTNet)。WFTNet 利用傅里叶变换和小波变换从信号中提取全面的时频信息,其中傅里叶变换捕获全局周期性模式,而小波变换捕获局部周期性模式。此外,我们引入了周期加权系数(PWC)来自适应平衡全局和局部频率模式的重要性。
2024-07-09 13:12:50
793
翻译 TACTiS: Transformer-Attentional Copulas for Time Series
时变量的估计是医疗保健和金融等领域决策的基本组成部分。然而,此类估计的实际效用受到它们量化预测不确定性的准确程度的限制。在这项工作中,我们解决了估计高维多元时间序列的联合预测分布的问题。我们提出了一种基于 Transformer 架构的通用方法,该方法使用基于注意力的解码器来估计联合分布,该解码器可证明学习模仿非参数联结函数的属性。由此产生的模型具有几个理想的特性:它可以扩展到数百个时间序列,支持预测和插值,可以处理未对齐和非均匀采样的数据,并且可以在训练期间无缝适应丢失的数据。
2024-07-08 10:46:24
237
翻译 When Model Meets New Normals: Test-Time Adaptation for Unsupervised Time-Series Anomaly Detection
时间序列异常检测通过从观察序列中学习正态性来处理检测异常时间步长的问题。然而,正态性的概念随着时间的推移而演变,导致了“新正态性问题”,其中正态性的分布可能由于训练数据和测试数据之间的分布变化而改变。本文强调了无监督时间序列异常检测研究中新常态问题的普遍存在。为了解决这个问题,我们提出了一种基于趋势估计的简单而有效的测试时间适应策略,以及一种在推理过程中学习新常态的自监督方法。对现实世界基准的大量实验表明,与基线相比,将所提出的策略纳入异常检测器可以持续提高模型的性能,从而提高分布变化的鲁棒性。
2024-07-07 15:55:50
415
2
翻译 CUTS+: High-dimensional Causal Discovery from Irregular Time-series
时间序列中的因果发现是机器学习社区的一个基本问题,可以在复杂场景中进行因果推理和决策。最近,研究人员通过将神经网络与格兰杰因果关系相结合,成功地发现了因果关系,但由于高度冗余的网络设计和巨大的因果图,当遇到高维数据时,其性能会大幅下降。此外,观察中缺失的条目进一步阻碍了因果结构学习。为了克服这些限制,我们提出了 CUTS+,它建立在基于格兰杰因果关系的因果发现方法 CUTS 的基础上,并通过引入一种称为粗到细发现(C2FD)的技术并利用基于消息传递的图神经网络来提高可扩展性 网络(MPGNN)。
2024-07-07 15:30:50
715
翻译 SimPSI: A Simple Strategy to Preserve Spectral Information in Time Series Data Augmentation
数据增强是训练神经网络以克服数据大小限制的关键组成部分,并且已经针对时间序列研究了多种技术。尽管这些技术在某些任务中有效,但它们尚未推广到时间序列基准。我们发现当前的数据增强技术破坏了频域内包含的核心信息。为了解决这个问题,我们提出了一种在时间序列数据增强中保留光谱信息(SimPSI)的简单策略。SimPSI 通过混合由保存图加权的原始输入频谱和增强输入频谱来保存频谱信息,该保存图表示每个频率的重要性得分。具体来说,我们的实验贡献是构建三个不同的保存图:幅度谱、显着性图和频谱保存图。
2024-07-07 13:18:06
207
翻译 U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting
时间序列预测是各个领域的一项关键任务。由于趋势、季节性或不规则波动等因素的影响,时间序列常常表现出非平稳性。它阻碍了深层特征的稳定传播,破坏了特征分布,并使学习数据分布变化变得复杂。因此,许多现有模型难以捕捉潜在模式,导致预测性能下降。在这项研究中,我们使用我们提出的名为 U-Mixer 的框架来应对时间序列预测中非平稳性的挑战。通过结合 Unet 和 Mixer,U-Mixer 有效地分别捕获不同块和通道之间的局部时间依赖性,以避免通道之间分布变化的影响,并合并低级和高级特征以获得全面的数据表示。
2024-07-02 11:04:55
798
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人