机器学习(十六):多类分类和Softmax回归

一、多类分类

多类分类是指分类问题有2个以上的可能输出结果。

二、Softmax回归

Softmax回归算法是逻辑回归算法的推广,用于计算多类分类问题。

假设y的值可能有1,2,3,4,一共4种可能性,Softmax回归的公式是:

z_{1} = \vec{w}_{1}\cdot \vec{x}+b_{1}

z_{2} = \vec{w}_{2}\cdot \vec{x}+b_{2}

z_{3} = \vec{w}_{3}\cdot \vec{x}+b_{3}

z_{4} = \vec{w}_{4}\cdot \vec{x}+b_{4}

a_{1}=\frac{e^{z_{1}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}+e^{z_{4}}} = P(y=1|\vec{x})

a_{2}=\frac{e^{z_{2}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}+e^{z_{4}}} = P(y=2|\vec{x})

a_{3}=\frac{e^{z_{3}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}+e^{z_{4}}} = P(y=3|\vec{x})

a_{4}=\frac{e^{z_{4}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}+e^{z_{4}}} = P(y=4|\vec{x})

Softmax回归的一般公式是:

如果y一共有N种可能性:

z_{j} = \vec{w}_{j}\cdot \vec{x}+b_{j}, j=1,...,N

a_{j}=\frac{e^{z_{j}}}{\sum_{N}^{k=1}e^{z_{k}}}=P(y=j|\vec{x})

计算出的a_{j} 是y=j的概率

三、Softmax回归的损失函数

逻辑回归:

z = \vec{w}\cdot \vec{x}+b

a_{1} = g(z) = \frac{1}{1+e^{-z}} = P(y=1|\vec{x})

a_{2} = 1-a_{1} = P(y=0|\vec{x})

逻辑回归损失函数:

loss=-ylog(a_{1})-(1-y)log(1-a_{1})

Softmax回归损失函数:

比如当y=2时,其他损失项都不存在,只有损失-log(a_{2})

学习来源:吴恩达机器学习,9.1-9.2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值