最长上升子序列下降子序列模板。

本文介绍了一种求解最长上升子序列与最长下降子序列的算法实现,并通过结合两者来寻找序列中最大不稳定部分的方法。该算法首先计算每个位置的最长下降子序列长度,然后逆序计算最长上升子序列长度,最后找出最长上升与下降子序列的组合长度最大的位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;

int n;
int a[N];
int f[N], g[N];

int main()
{
    scanf("%d", &n);
    for(int i=1; i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)//求最长下降子序列长度
    {
        f[i]=1;
        for(int j=1;j<i;j++)
            if(a[i]>a[j])
            f[i]=max(f[i],f[j]+1);
    }
    for(int i=n;i;i--)//求最长上升子序列长度
    {
        g[i]=1;
        for(int j=n;j>i;j--)
            if(a[i]>a[j])
            g[i]=max(g[i],g[j]+1);
    }
    int res=0;
    for(int i=1;i<=n;i++)
    {
        res=max(res,f[i]+g[i]-1);
    }
    printf("%d\n",n-res);
    return 0;
}
### 动态规划解决最长上升子序列问题 对于最长上升子序列(Longest Increasing Subsequence, LIS),可以采用动态规划的方法来解决问题。以下是基于动态规划的核心思想以及其实现方式。 #### 方法一:O(n²) 时间复杂度的动态规划算法 通过定义 `d[i]` 表示以第 `i` 个元素结尾的最长上升子序列长度,我们可以构建如下状态转移方程: 如果存在某个位置 `j` (其中 `j < i` 并且 `a[j] < a[i]`),则有: \[ d[i] = \max(d[i], d[j] + 1) \] 初始状态下,每个位置的最长上升子序列为 1,即 \( d[i] = 1 \),因为单个元素本身就是一个合法的上升子序列[^1]。 下面是该方法的具体实现代码: ```python def lis_dp_n2(arr): n = len(arr) if n == 0: return 0 d = [1] * n # 初始化为1 for i in range(1, n): for j in range(i): if arr[j] < arr[i]: d[i] = max(d[i], d[j] + 1) # 更新最大值 return max(d) # 测试用例 arr = [2, 7, 1, 5, 6, 4, 3, 8, 9] print(lis_dp_n2(arr)) # 输出应为5 ``` 此方法的时间复杂度为 O(n²)。 --- #### 方法二:优化至 O(n log n) 的解决方案 为了进一步降低时间复杂度到 O(n log n),可以引入辅助数组 `g[]` 来记录当前已知的不同长度的上升子序列对应的最小末尾数值。具体来说,每次遇到一个新的数时,将其插入到合适的位置替换掉原有的较大值或者扩展新的长度[^4]。 下面是一个具体的 Python 实现版本: ```python import bisect def lis_optimized(arr): g = [] # 辅助数组用于保存不同长度下的最小可能结束值 for num in arr: pos = bisect.bisect_left(g, num) # 找到num应该放置的位置 if pos >= len(g): # 如果pos超出范围,则说明找到了更长的子序列 g.append(num) else: # 否则更新对应位置上的值 g[pos] = num return len(g) # 测试用例 arr = [2, 7, 1, 5, 6, 4, 3, 8, 9] print(lis_optimized(arr)) # 输出应为5 ``` 这种方法利用了二分查找技术,在保持最优解的同时显著减少了计算量。 --- ### 总结 上述两种方法分别展示了如何使用不同的策略去求解最长上升子序列问题。第一种方法简单易懂但效率较低;而第二种方法虽然逻辑稍显复杂,却极大地提高了运行速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值