自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 欧几里得结构数据 非欧几里得结构数据

在我们日常生活中,最常见到的媒体介质莫过于是和以及了,这些数据有一个特点就是:“排列整齐”。图1.欧几里得结构数据示例对于某个节点,我们很容易可以找出其邻居节点,就在旁边嘛,不偏不倚。非欧几里德结构的样本总得来说有两大类型,分别是图(Graph)数据和流形数据。图2. 图结构数据是典型的非欧几里德结构数据图3.流形数据也是典型的非欧几里德结构数据这两类数据有个特点就是,排列不整齐,比较的随意。具体体现在:对于数据中的某个点,难以定义出其邻居节点出来,或者是不同节点的邻居节点的数量是不同的,因此这类型的数据不

2023-10-23 20:03:19 526 1

原创 神经网络简述

对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。b站:“卷积”的意义。

2023-10-08 20:42:28 78 1

原创 拉普拉斯矩阵及其变体、图傅里叶变换

给定一个具有n nn个顶点的简单图G = ( V , E ) G=(V, E)G=(V,E),V VV为顶点集合,E EE为边集合,其拉普拉斯矩阵可定义为:L=D−A其中A为邻接矩阵,D为度矩阵。注意,A中的元素仅仅可能是 0 和 1,且其对角元素全为 0。D 是一个对角矩阵。

2023-10-08 20:40:39 151 1

原创 机器学习简述

在强化学习中,智能体(agent)通过尝试最大化累积的奖励来学习适应环境的行为。在监督学习中,模型通过使用带有标签的训练数据进行训练。每个训练样本都有一个与之相关联的标签,模型的目标是学习如何从输入数据映射到输出标签,以便对新的、未见过的数据进行预测。半监督学习介于监督学习和无监督学习之间。它利用既有标签的训练数据,同时也使用未标签的数据。与监督学习不同,无监督学习中的训练数据没有标签。模型的目标是在没有预定义输出的情况下发现数据中的模式、结构或关系。无监督学习的例子包括。是由人类自己定义规则。

2023-10-08 10:20:32 99 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除