1.证明命题 11.2。
要证 QRpQR_pQRp 在乘法上成群,验证 QRpQR_pQRp 在群公理上是否成立即可。
封闭性:
由命题 11.3 和 QRpQR_pQRp 的定义我们可以得知 QR*QR = QR (mod p),那么显然乘法是封闭的。
结合律继承 Zp∗Z_p^*Zp∗ 的乘法,显然。
单位元:
由 a212≡12a2≡a2 (mod p)a^21^2 \equiv 1^2a^2 \equiv a^2 \ (mod \ p)a212≡12a2≡a2 (mod p),有 12≡1 (mod p)1^2 \equiv 1 \ (mod \ p)12≡1 (mod p) 为单位元。
乘法逆元存在:
对 ∀x∈QRp,∃a∈Zp∗\forall x \in QR_p, \exist a \in Z_p^*∀x∈QRp,∃a∈Zp∗,使得 x≡a2 (mod p)x \equiv a^2 \ (mod \ p)x≡a2 (mod p),那么由
x(a−1)2≡a2(a−1)2≡1 (mod p)x(a^{-1})^2 \equiv a^2(a^{-1})^2 \equiv 1 \ (mod \ p)x(a−1)2≡a2(a−1)2≡1 (mod p) 可知 x−1≡(a−1)2 (mod p)x^{-1} \equiv (a^{-1})^2 \ (mod \ p)x−1≡(a−1)2 (mod p)。
证毕。
2.使用群论的方法证明定理 11.1。
不妨构造一个映射 ϕ:Zp∗→QRp\phi:Z_p^* \rightarrow QR_pϕ:Zp∗→QRp 为 a→a2 (mod p),∀a∈Zp∗a \rightarrow a^2 \ (mod \ p), \forall a \in Z_p^*a→a2 (mod p),∀a∈Zp∗,
从 QRpQR_pQRp 的定义我们可以得知这是一个满射,接着我们证明 ϕ\phiϕ 是一个群同态,显然,由
ϕ(ab)=(ab)2=a2b2=ϕ(a)ϕ(b)\phi(ab) = (ab)^2 = a^2b^2 = \phi(a)\phi(b)ϕ(ab)=(ab)2=a2b2=ϕ(a)ϕ(b) 得证。
令 K=kerϕ={1,p−1}K = ker \phi = \{1,p-1\}K=kerϕ={1,p−1},我们借此构造一个标准同态 ψ:Zp∗→Zp∗/K\psi:Z_p* \rightarrow Z_p^*/Kψ:Zp∗→Zp∗/K,
由第一同构定理我们可以得到 Zp∗/K≅QPpZ_p^*/K \cong QP_pZp∗/K≅QPp,那么有∣QRp∣=∣Zp∗∣/2=(p−1)/2|QR_p| = |Z_p^*|/2 = (p-1)/2∣QRp∣=∣Zp∗∣/2=(p−1)/2,
证毕。
3.定义映射 ψ:Zp∗→{1,−1}为ψ(a)=(a/p),∀a∈Zp∗\psi: Z_p^* \rightarrow \{1,-1\} 为 \psi(a) = (a/p), \forall a \in Z_p^*ψ:Zp∗→{1,−1}为ψ(a)=(a/p),∀a∈Zp∗。请证明这是一个满同态。
(本解题思路是基于默认 p 是一个奇素数的意识下提供的)
首先,我们可以确定这是一个满射。由定理 11.2 可得 Z_p^*恰好有 (p-1)/2 个 QR 和 (p-1)/2 个 QNR,
那么由 ψ\psiψ 的定义可得知 QR 将打在 1 上, QNR 将打在 -1 上,故 $\psi $ 必然会是一个满射。
接着确认 ψ\psiψ 是一个群同态即可。由命题 11.4可得到,
对 ∀a,b∈Zp∗\forall a,b \in Z_p^*∀a,b∈Zp∗,ψ(ab)=(ab/p)=(a/p)(b/p)=ψ(a)ψ(b)\psi(ab) = (ab/p) = (a/p)(b/p) = \psi(a)\psi(b)ψ(ab)=(ab/p)=(a/p)(b/p)=ψ(a)ψ(b),证毕。
4.设 p 是奇素数,证明 Zp∗\Z_p^*Zp∗ 的所有生成元都是模 p 的二次非剩余。
令 g Zp∗Z_p^*Zp∗ 的生成元,且 g 是一个QR,则 ∃a∈Zp∗,g≡a2 (mod p)\exist a \in Z_p^*, g\equiv a^2 \ (mod \ p)∃a∈Zp∗,g≡a2 (mod p),
那么 g 的阶应该为 p-1,即 gp−1≡a2(p−1)≡1 (mod p)g^{p-1} \equiv a^{2(p-1)} \equiv 1 \ (mod \ p)gp−1≡a2(p−1)≡1 (mod p),
这意味着 g(p−1)/2≡ap−1≡1 (mod p)g^{(p-1)/2} \equiv a^{p-1} \equiv 1 \ (mod \ p)g(p−1)/2≡ap−1≡1 (mod p) 成立,也就是说 g 的阶为 (p-1)/2 < p-1,
g 显然不该是生成元,矛盾。
5.证明命题 11.4
从勒让德符号的定义上看, 1 和 3 显然是成立的。
根据命题 11.3 也可证出 2 的结论是正确的。
6.给出推论 11.1 的完整证明。
续上原证明,
p≡−1 (mod 4)p \equiv -1 \ (mod \ 4)p≡−1 (mod 4),意味着 ∃k∈Z,p=4k+3 (mod p)\exist k \in Z, p = 4k+3 \ (mod \ p)∃k∈Z,p=4k+3 (mod p),
根据欧拉准则,(−1/p)≡(−1)(p−1)/2≡(−1)(4k+3−1)/2≡(−1)2k+1≡−1 (mod p)(-1/p) \equiv (-1)^{(p-1)/2} \equiv (-1)^{(4k+3-1)/2} \equiv (-1)^{2k+1} \equiv -1 \ (mod \ p)(−1/p)≡(−1)(p−1)/2≡(−1)(4k+3−1)/2≡(−1)2k+1≡−1 (mod p)。
证毕。