1、张量的介绍
张量:类似numpy中的数组
张量优势:1.可以运行在GPU上加快计算;2.保存梯度信息
2、创建张量
基于torch.tensor()创建张量
3、张量的属性
4、张量.py
import torch
import numpy as np
"""
张量:类似numpy中的数组
张量优势:1.可以运行在GPU上加快计算;2.保存梯度信息
"""
# 一、创建张量
#数据可以是列表、元组、数组
t1=torch.tensor([1.,2],requires_grad=True)
print(t1)
arr=np.array([1,2])
t2=torch.tensor(arr)
print(t2)
# 二、张量的属性
print("data",t1.data)#数据部分
print("dtype",t1.dtype)#
print("shape",t1.shape)#
print("device",t1.device)#张量是否是GPU CPU
print("grad",t1.grad)#梯度
print("grad_fn t1是由什么产生",t1.grad_fn)#如果张量是由自己创建,返回None
t3=t1+5
print("grad_fn t3是由什么产生",t3.grad_fn) #<AddBackward0 object at 0x000002A9C054F370>