深度学习7---张量

1、张量的介绍

张量:类似numpy中的数组
张量优势:1.可以运行在GPU上加快计算;2.保存梯度信息
在这里插入图片描述
在这里插入图片描述

2、创建张量

基于torch.tensor()创建张量
在这里插入图片描述在这里插入图片描述在这里插入图片描述

3、张量的属性

在这里插入图片描述

4、张量.py

import torch
import numpy as np
"""
张量:类似numpy中的数组
张量优势:1.可以运行在GPU上加快计算;2.保存梯度信息
"""

# 一、创建张量
#数据可以是列表、元组、数组
t1=torch.tensor([1.,2],requires_grad=True)
print(t1)

arr=np.array([1,2])
t2=torch.tensor(arr)
print(t2)

# 二、张量的属性
print("data",t1.data)#数据部分
print("dtype",t1.dtype)#
print("shape",t1.shape)#

print("device",t1.device)#张量是否是GPU CPU
print("grad",t1.grad)#梯度
print("grad_fn t1是由什么产生",t1.grad_fn)#如果张量是由自己创建,返回None

t3=t1+5
print("grad_fn t3是由什么产生",t3.grad_fn)  #<AddBackward0 object at 0x000002A9C054F370>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值