学生方阵
一、题目
蒜头君的班级里有 n^2 个同学,现在全班同学已经排列成一个 n∗n的方阵,但是老师却临时给出了一组新的列队方案
为了方便列队,所以老师只关注这个方阵中同学的性别,不看具体的人是谁
这里我们用0表示男生,用1表示女生。现在蒜头君告诉你同学们已经排好的方阵是什么样的,再告诉你老师希望的方阵是什么样的。他想知道同学们已经列好的方阵能否通过顺时针旋转变成老师希望的方阵。
1.不需要旋转则输出 0
2.顺时针旋转 90° 则输出 1
3.顺时针旋转 180° 则输出 2
4. 顺时针旋转 270° 则输出 3
若不满足以上四种情况则输出 −1,若满足多种情况,则输出较小的数字
二、 输入
第一行为一个整数 n
接下来的 n 行同学们已经列好的 01 方阵;
再接下来的 n 行表示老师希望的的 01 方阵。
三、输出
输出仅有一行,该行只有一个整数,如题所示。
四、样例输入输出
Input
4
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
Output
1
五、解题思路
定义两个二维数组存放矩阵。
遍历矩阵中每个位置,判断其旋转(0°,90°,180°,270°)后位置的元素是否与该位置的元素相等,从而判断两个矩阵的关系。
其中A旋转270°得到B,等于B旋转90°得到A。
六、样例代码
#include<iostream>
using namespace std;
int n;
int a[20][20],b[20][20];
bool turn0()
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(a[i][j]!=b[i][j])
{
return false;
}
}
}
return true;
}
bool turn90()
{
bool jde=true;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(a[i][j]!=b[j][n-i-1])
{
return false;
}
}
}
return true;
}
bool turn180()
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(a[i][j]!=b[n-i-1][n-j-1])
{
return false;
}
}
}
return true;
}
bool turn270()
{
bool jde=true;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(b[i][j]!=a[j][n-i-1])
{
return false;
}
}
}
return true;
}
void solve()
{
if(turn0())
{
cout<<"0"<<endl;
return;
}
else if(turn90())
{
cout<<"1"<<endl;
return;
}
else if(turn180())
{
cout<<"2"<<endl;
return;
}
else if(turn270())
{
cout<<"3"<<endl;
return;
}
else
{
cout<<"-1"<<endl;
return;
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>a[i][j];
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>b[i][j];
solve();
return 0;
}