如何将PyTorch Lightning的.ckpt文件转化为.pth文件

文章讲述了如何在使用原生PyTorch的代码中加载PyTorchLightning训练的模型,重点在于处理state_dict的加载以及不同框架间参数命名的调整。

记录碰到的一个问题:

使用pytorch lightning框架下训练好的一个分割模型,需要在另外一套使用原生pytorch写的代码中,不知道怎么加载训练好的.ckpt模型

解决方案:

ckpt里保存了更多信息,而我们只需要state_dict,同时观察到两者的参数命名存在略微差异

# 创建一个新的模型状态字典
new_state_dict = {}

# 遍历原始字典中的键值对
for old_key, old_value in xx['state_dict'].items():
    # 删除键中的 'net.' 部分
    new_key = old_key.replace('net.', '')

    # 使用新的键来保存值
    new_state_dict[new_key] = old_value

# 将新的状态字典保存到一个新的文件
torch.save(new_state_dict, 'xxx.pth')

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值