将数据从 Kafka 通过 Flink 处理并最终落到 Doris 的流程可以概括为以下几个步骤:
1. 数据生产与消费:
- Kafka 作为消息队列,接收和存储数据。这些数据可以由各种生产者(如应用程序、日志系统等)写入 Kafka 的主题(topic)。
- Flink 作为流处理框架,从 Kafka 的主题中消费数据。Flink 支持实时流处理,因此可以立即处理 Kafka 中的消息。
2. 数据处理:
- 在 Flink 中,Kafka 消费者(Kafka Source)会将数据流输入 Flink 的数据流引擎。Flink 可以对数据进行各种处理,如过滤、转换、聚合、窗口计算等。
- Flink 作业(Job)会定义如何处理这些数据流。例如,将原始数据解析为结构化的格式,对字段进行转换,或者应用复杂的计算逻辑。
3. 数据写入 Doris:
- Doris Sink: Flink 提供了将处理后的数据写入 Doris 的功能,这通常通过 Flink 的
Sink
机制实现。 - Batch vs. Streaming: 根据需要,Flink 可以选择以批处理或流式处理的方式将数据写入 Doris。通常,流式处理用于实时写入,而批处理适合定时批量写入。
- Data Mapping: Flink 作业会根据 Doris 表的 schema 将数据转换成 Doris 能够接受的格式。Doris 支持各种数据导入方式,如
INSERT
语句、流式导入(Stream Load)、Broker Load 等。Flink 会调用相应的 API 或 SQL 语句将数据写入 Doris。