pandas-经典栗子

一. Pandas-日期数据类型

1. 假设有一个datetime对象,表示2023年9月1日的日期和时间,如何将其转换为字符串表示形式

from datetime import datetime
dt = datetime(2025,1,1)
dt_str= dt.strftime("%Y-%m-%d")
dt_str
'2025-01-01'

2.请将2023年9月1日12点30分和2023年10月2日13点转换为datetime对象,并计算它们之间的时间差

import datetime

# 创建datetime对象
start_time = datetime.datetime(2023, 9, 1, 12, 30, 0)
end_time = datetime.datetime(2023, 10, 2, 13, 0, 0)

# 计算时间差
time_diff = end_time - start_time
from datetime import datetime

# 将日期时间字符串转换为datetime对象
dt1 = datetime.strptime('2023-09-01 12:30:00', '%Y-%m-%d %H:%M:%S')
dt2 = datetime.strptime('2023-10-02 13:00:00', '%Y-%m-%d %H:%M:%S')

# 计算时间差
time_diff = dt2 - dt1

# 输出时间差
print("时间差是:", time_diff)
print("时间差的天数:", time_diff.days)
print("时间差的秒数:", time_diff.total_seconds())
时间差是: 31 days, 0:30:00
时间差的天数: 31
时间差的秒数: 2680200.0

3.有如下数据,date = {“data”: [“2023-01-01”, “2023-03-01”, “2023-02-01”, “2023-06-01”, “2023-04-01”, “2023-05-01”]},请将其转换为datetime类型数据,并将其按照日期降序进行排序

import pandas as pd

date = {"date": ["2023-01-01", "2023-03-01", "2023-02-01", "2023-06-01", "2023-04-01", "2023-05-01"]}
df = pd.DataFrame(date)
df["date"] = pd.to_datetime(df["date"])
df = df.sort_values("date", ascending=False)
from datetime import datetime

# 输入数据
date = {"data": ["2023-01-01", "2023-03-01", "2023-02-01", "2023-06-01", "2023-04-01", "2023-05-01"]}

# 将字符串列表转换为datetime对象列表
datetime_list = [datetime.strptime(d, '%Y-%m-%d') for d in date['data']]

# 按照日期降序排序
datetime_list.sort(reverse=True)

# 输出排序后的datetime对象
for dt in datetime_list:
    print(dt.strftime('%Y-%m-%d'))

2023-06-01
2023-05-01
2023-04-01
2023-03-01
2023-02-01
2023-01-01

4. 使用datetime获取到当前时间,并在当前时间的基础上加上1天

from datetime import datetime, timedelta

# 获取当前时间
current_time = datetime.now()

# 在当前时间的基础上加上1天
new_time = current_time + timedelta(days=1)

# 输出当前时间和新时间
print("当前时间:", current_time.strftime('%Y-%m-%d %H:%M:%S'))
print("加上一天后的时间:", new_time.strftime('%Y-%m-%d %H:%M:%S'))

当前时间: 2025-01-04 23:49:59
加上一天后的时间: 2025-01-05 23:49:59
内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值