一. 算法原理
先确定K值, 再计算距离,最后挑选K个最近的邻居进行投票
KNN 算法原理简单,不需要训练,属于监督学习算法,常用来解决分类问题
二. 鸢尾花数据集介绍
鸢尾花数据集
鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa和Virginica
每个花的特征用如下属性描述:
from sklearn.datasets import load_iris
# 1. 准备数据集
iris = load_iris()
iris.data
iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
print(iris.DESCR)
Iris plants dataset
Data Set Characteristics:
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:
- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:
- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica
:Summary Statistics:
============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation
============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================
:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988
三. 鸢尾花KNN
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
if __name__ == '__main__':
# 1. 加载数据集
iris = load_iris() #通过iris.data 获取数据集中的特征值 iris.target获取目标值
# 2. 数据标准化
transformer = StandardScaler()
x_ = transformer.fit_transform(iris.data) # iris.data 数据的特征值
# 3. 模型训练
estimator = KNeighborsClassifier(n_neighbors=3) # n_neighbors 邻居的数量,也就是Knn中的K值
estimator.fit(x_, iris.target) # 调用fit方法 传入特征和目标进行模型训练
# 4. 利用模型预测
result = estimator.predict(x_)
print(result)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
四. k值的选择
KNN算法的关键是,是K值的选择,下图中K=3,属于红色三角形,K=5属于蓝色的正方形。这个时候就是K选择困难的时候。
KNN 算法中K值过大、过小都不好, 一般会取一个较小的值
采用交叉验证法(把训练数据再分成:训练集和验证集)来选择最优的K值。
#加载数据集
x,y = load_iris(return_X_y=True)
#数据标准化
scaler = StandardScaler()
x_scaled = scaler.fit_transform(x)
#划分数据集
x_train,x_test,y_train,y_test = train_test_split(x_scaled,y,test_size=0.2,random_state=0)
#创建网络搜索对象
knn = KNeighborsClassifier()
param_grid = {'n_neighbors':[1, 3, 5, 7]}
estimator = GridSearchCV(knn, param_grid, cv=5)
#训练模型
estimator.fit(x_train,y_train)
#输出最优参数
#打印最优参数(验证集)
print('最优参数组合:', estimator.best_params_, '最好得分:', estimator.best_score_)
#测试集评估模型(测试集)
print('测试集准确率:', estimator.score(x_test, y_test))
最优参数组合: {'n_neighbors': 7} 最好得分: 0.9416666666666667
测试集准确率: 1.0
五. 手写数字数据介绍
数据文件手写数字识别.csv
包含从 0 到 9 的手绘数字的灰度图像。
● 每个图像高 28 像素,宽28 像素,共784个像素。
● 每个像素取值范围[0,255],取值越大意味着该像素颜色越深
● 数据集共785列。第一列为 “标签”,为该图片对应的手写数字。其余784列为该图像的像素值
● 训练集中的特征名称均有pixel前缀,后面的数字([0,783])代表了像素的序号。
import pandas as pd
data = pd.read_csv('data/手写数字识别.csv')
data.head()
data.shape
(42000, 785)
二. 手写数字识别KNN
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import joblib
from collections import Counter
def show_digit(idx):
# 加载数据
data = pd.read_csv('data/手写数字识别.csv')
if idx < 0 or idx > len(data) - 1:
return
x = data.iloc[:, 1:]
y = data.iloc[:,0]
print('当前数字的标签为:',y[idx])
# data 修改为 ndarray 类型
data_ = x.iloc[idx].values
# 将数据形状修改为 28*28
data_ = data_.reshape(28, 28)
# 关闭坐标轴标签
plt.axis('off')
# 显示图像
plt.imshow(data_)
plt.show()
def train_model():
# 1. 加载手写数字数据集
data = pd.read_csv('data/手写数字识别.csv')
x = data.iloc[:, 1:] / 255
y = data.iloc[:, 0]
# 2. 打印数据基本信息
print('数据基本信息:', x.shape)
print('类别数据比例:', Counter(y))
# 3. 分割数据集
split_data = train_test_split(x, y, test_size=0.2, stratify=y, random_state=0)
x_train, x_test, y_train, y_test = split_data
# 4. 模型训练
estimator = KNeighborsClassifier(n_neighbors=3)
estimator.fit(x_train, y_train)
# 5. 模型评估
acc = estimator.score(x_test, y_test)
print('测试集准确率: %.2f' % acc)
# 6. 模型保存
joblib.dump(estimator, 'model/knn.pth')
def test_model():
# 读取图片数据
import matplotlib.pyplot as plt
import joblib
img = plt.imread('temp/demo.png')
plt.imshow(img)
# 加载模型
knn = joblib.load('model/knn.pth')
y_pred = knn.predict(img.reshape(1, -1))
print('您绘制的数字是:', y_pred)
# 显示部分数字
show_digit(1)
当前数字的标签为: 0
# 训练模型
train_model()
数据基本信息: (42000, 784)
类别数据比例: Counter({1: 4684, 7: 4401, 3: 4351, 9: 4188, 2: 4177, 6: 4137, 0: 4132, 4: 4072, 8: 4063, 5: 3795})
测试集准确率: 0.97
# 测试模型
test_model()
您绘制的数字是: [1]
啊偶,预测错了