在推导卡尔曼滤波时,状态空间方程一般设为
xk=Axk−1+Buk−1+wk−1zk=Hxk+vk
\begin{align*}
x_k&=Ax_{k-1}+Bu_{k-1}+w_{k-1}\\
z_k&=Hx_k+v_k
\end{align*}
xkzk=Axk−1+Buk−1+wk−1=Hxk+vk
其中www为过程噪声,vvv为测量噪声。一般假定www和vvv都服从高斯分布,例如
w∼N(0,Q)
w\sim N(0,Q)
w∼N(0,Q)
0是其期望,QQQ是其协方差矩阵,具体为
Q=E(ww⊤)
Q=E(ww^\top)
Q=E(ww⊤)
以一个例子来验证一下:设
w=(w1w2)
w=\binom{w_1}{w_2}
w=(w2w1)
则
ww⊤=(w1w2)(w1w2)=(w12w1w2w2w1w22)
ww^\top=\binom{w_1}{w_2}(w_1\quad w_2 )=\binom{w_1^2\quad w_1w_2}{w_2w_1\quad w_2^2}
ww⊤=(w2w1)(w1w2)=(w2w1w22w12w1w2)
E(ww⊤)=(Ew12Ew1w2Ew2w1Ew22)
E(ww^\top)=\binom{Ew_1^2\quad Ew_1w_2}{Ew_2w_1\quad Ew_2^2}
E(ww⊤)=(Ew2w1Ew22Ew12Ew1w2)
又由于
Ew1=Ew2=0
Ew_1=Ew_2=0
Ew1=Ew2=0
故
E(ww⊤)=(cov(w1w1)cov(w1w2)cov(w2w1)cov(w2w2))
E(ww^\top)=\binom{cov(w_1\quad w_1)\quad cov(w_1\quad w_2)}{cov(w_2\quad w_1)\quad cov(w_2\quad w_2)}
E(ww⊤)=(cov(w2w1)cov(w2w2)cov(w1w1)cov(w1w2))
卡尔曼滤波中过程噪声初处理
于 2022-08-07 14:39:19 首次发布