卡尔曼滤波中过程噪声初处理

在推导卡尔曼滤波时,状态空间方程一般设为
xk=Axk−1+Buk−1+wk−1zk=Hxk+vk \begin{align*} x_k&=Ax_{k-1}+Bu_{k-1}+w_{k-1}\\ z_k&=Hx_k+v_k \end{align*} xkzk=Axk1+Buk1+wk1=Hxk+vk
其中www为过程噪声,vvv为测量噪声。一般假定wwwvvv都服从高斯分布,例如
w∼N(0,Q) w\sim N(0,Q) wN(0,Q)
0是其期望,QQQ是其协方差矩阵,具体为
Q=E(ww⊤) Q=E(ww^\top) Q=E(ww)
以一个例子来验证一下:设
w=(w1w2) w=\binom{w_1}{w_2} w=(w2w1)

ww⊤=(w1w2)(w1w2)=(w12w1w2w2w1w22) ww^\top=\binom{w_1}{w_2}(w_1\quad w_2 )=\binom{w_1^2\quad w_1w_2}{w_2w_1\quad w_2^2} ww=(w2w1)(w1w2)=(w2w1w22w12w1w2)
E(ww⊤)=(Ew12Ew1w2Ew2w1Ew22) E(ww^\top)=\binom{Ew_1^2\quad Ew_1w_2}{Ew_2w_1\quad Ew_2^2} E(ww)=(Ew2w1Ew22Ew12Ew1w2)
又由于
Ew1=Ew2=0 Ew_1=Ew_2=0 Ew1=Ew2=0

E(ww⊤)=(cov(w1w1)cov(w1w2)cov(w2w1)cov(w2w2)) E(ww^\top)=\binom{cov(w_1\quad w_1)\quad cov(w_1\quad w_2)}{cov(w_2\quad w_1)\quad cov(w_2\quad w_2)} E(ww)=(cov(w2w1)cov(w2w2)cov(w1w1)cov(w1w2))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值