
机器学习
文章平均质量分 87
weixin_45937995
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【人脸识别】基于HOG特征、SVM算法实现微笑识别
【机器学习】机器学习之支持向量机(SVM) 21/100 发布文章 weixin_45937995 未选择文件 new 目录 一、HOG特征提取原理 二、代码实现 三、总结 四、参考 一、HOG特征提取原理 HOG特征提取流程可分为5个部分:检测窗口、归一化图像、计算梯度、统计直方图、梯度直方图归一化、得到HOG特征向量。 检测窗口: HOG通过窗口(window)和块(block)将图像进行分割。通过以细胞(cell)为单位,对图像某一区域的像素值进行数学计算处理。在此先介绍窗口(window原创 2022-01-05 14:34:23 · 513 阅读 · 0 评论 -
【机器学习】机器学习之支持向量机(SVM)
目录 一、支持向量机(Support Vector Machine)介绍 1. 支持向量机基本型 2. 核函数 3. 常用核函数 二、基于SVM处理月亮数据集分类 1. 基于线性核函数 2. 基于多项式核 3. 基于高斯核 三、基于SVM处理鸢尾花数据集分类 1. 基于线性核 2. 基于多项式核 3. 基于高斯核 四、总结 五、参考 一、支持向量机(Support Vector Machine)介绍 支持向量机(Support Vector Machine,常简称为SVM)是一种原创 2022-01-05 14:22:12 · 542 阅读 · 0 评论 -
【机器学习】机器学习之线性判别分析(LDA)
目录 一、线性判别分析介绍 二、线性判别分析原理 1. 类内散度矩阵(within-class scatter matrix) 2. 类间散度矩阵(between-class scatter matrix) 3. 广义瑞利商(generalized Rayleigh quotiet) 三、sklearn库实现线性判别分析LDA 四、总结 五、参考 一、线性判别分析介绍 线性判别分析(Linear Discriminant Analysis,简称 L D A LDA LDA)是一种经典的线性学习方原创 2022-01-05 14:17:45 · 971 阅读 · 0 评论 -
【机器学习】机器学习之决策树(基于ID3、CART挑选西瓜)
目录 一、决策树介绍 1. 基本流程 2. 选择划分因素 (1)信息熵(information entropy) (2)信息增益 (information gain) (3)增益率(gain ratio) (4)基尼指数(Gini index) 二、实现基于信息增益准则(ID3)的决策树 1. 数据样本处理 2. 代码实现 (1)建立决策树 (2)绘制决策树 3. 结果分析 三、使用Sklearn库实现决策树 1. 基于信息增益准则( I D 3 ID3 ID3或 C原创 2022-01-05 14:15:11 · 1859 阅读 · 1 评论 -
【机器学习】机器学习之一元线性回归
目录 一、多元线性回归基础理论 二、案例分析 三、数据预处理 1.错误数据清洗 2.非数值型数据转换 四、使用Excel实现回归 1.回归实现 2.回归分析 五、使用代码实现回归 1. 数据预处理 2. 使用Statsmodels建立多元线性回归模型 3. 使用Sklearn库建立多元线性回归模型 4. 模型优化 六、总结 七、参考 一、多元线性回归基础理论 在研究现实问题时,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,原创 2022-01-05 13:57:46 · 472 阅读 · 0 评论