leetcode(动态规划)53.最大子数组和(C++详细解释)DAY12

本文介绍了解决编程题目的方法,通过动态规划优化算法,找到整数数组中具有最大和的连续子数组。暴力求解导致超时,而动态规划将时间复杂度降低至O(n),并展示了相关代码实现和总结了作者的学习进度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例

在这里插入图片描述

提示

在这里插入图片描述

2.解答思路

起初思路暴力求解,两层for循环,但超出时间限制。
查看其他题解,学习以下动态规划算法。
关于动态规划算法,后续会出一篇文章详细解释。
此处简述:
动态规划的核心思想是将原始问题分解为更小的子问题,并通过求解子问题的解来推导出原始问题的解。避免重复计算,提高算法的效率。

3.实现代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int maxSum=nums[0];
        int n=nums.size();

        int sum=nums[0];//记录当下的和

        for(size_t i=1;i<n;++i){
            sum += nums[i];
            sum = max(sum,nums[i]);
            /*
            将当下及之前元素的和max和单个元素进行比较nums[i],求最大值
            若当下的和 大于 单个元素,则加和运算
            若当下的和 小于 单个元素,则将单个元素的值赋给max,
            以便后续继续求解*/
            maxSum=max(sum,maxSum);         
        }


        return maxSum;
    }
};

结果

在这里插入图片描述
暴力求解一直超时。
动态规划算法将时间复杂度降到了O(n),通过。

4.总结

前两天感冒突然严重+家中亲人走访,学习时间减少,今天病情好转,后续会继续更新学习。

自信,坚持,upup~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值