jetson orin nano 安装torch及torchvision

首先

先下载arm架构下得torch及torchvision文件夹

PyTorch for Jetson - Announcements - NVIDIA Developer Forums

根据自己所需要的版本下载,点一下就会自动下载

然后上传到jetson Orin nano开发板上,上传软件哪个都行

此网站:torchvision得githup上的

GitHub - pytorch/vision: Datasets, Transforms and Models specific to Computer Vision

命令:下载torchvision

git clone -b v0.8.1 https://github.com/pytorch/vision torchvision

完事之后开始安装

先安装torch

pip install (下载的torch整条名)

安装成功后命令输入看一下有么有

命令:

pip show torch

然后开始安装torchvision,先进入此文件夹

cd torchvision

python3 setup.py install --user

然后开始安装,比较慢 等彻底结束

安装完之后就是网上找个代码,验证一下cuda|torch有没有问题了,输出True,那就基本没啥大问题了

出现bug

这里报错是因为没有依赖,直接下载就可以了

sudo apt-get install libopenblas-base

### 如何在Jetson NanoOrin设备上使用torchvision 对于希望在Jetson NanoOrin设备上利用`torchvision`库处理计算机视觉任务的开发者而言,理解这些平台特有的安装和配置方法至关重要。 #### 安装PyTorchtorchvision 由于Jetson系列基于ARM架构而非常见的x86架构,官方预编译包可能无法直接适用于此类硬件。因此,在Jetson平台上部署深度学习模型时需特别注意软件环境的选择与构建[^2]。针对此情况,推荐采用如下方式来设置开发环境: 1. 使用L4T (Linux for Tegra) SDK提供的Docker镜像作为基础环境,该SDK由NVIDIA专门为Jetson系列产品定制优化; 2. 借助conda虚拟环境管理工具创建独立的工作空间,并通过指定渠道获取适合目标系统的PyTorch版本及其依赖项; 3. 对于最新款式的Jetson Orin设备,则可以直接从NVIDIA NGC Catalog下载经过验证的企业级容器映像,其中已包含了预先配置好的PyTorch以及相关组件。 #### 配置CUDA可见性 为了使PyTorch能够识别并充分利用Jetson内置的GPU资源执行加速计算操作,必须正确设定CUDA_VISIBLE_DEVICES环境变量。这一步骤确保了程序仅访问预期中的图形处理器单元而不干扰其他进程正常运作[^1]。 ```bash export CUDA_VISIBLE_DEVICES=0 ``` #### 加载数据集并通过DataLoader迭代读取样本 借助`torchvision.datasets`模块可以轻松加载多种流行的数据集合;而`torch.utils.data.DataLoader`类则提供了灵活简便的方法用于批量传输图像至神经网络输入层之前完成必要的前处理工作,比如随机裁剪、翻转等增强手段的应用。 ```python from torchvision import datasets, transforms import torch transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), ]) dataset = datasets.ImageFolder(root='/path/to/dataset', transform=transform) dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True) for images, labels in dataloader: pass # 进行训练或其他操作 ``` #### 应用预训练模型进行推理预测 除了自定义设计卷积神经网络结构外,还可以考虑调用`torchvision.models`下众多已经过大规模公开测试集充分训练过的经典模型实例来进行迁移学习或者特征提取任务。这类做法不仅节省了大量的时间成本而且有助于提高最终解决方案的质量水平。 ```python import torchvision.models as models model = models.resnet18(pretrained=True).cuda() model.eval() with torch.no_grad(): outputs = model(images.cuda()) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值