Dijkstra算法寻找最短路径
一、问题描述
寻找最短路径属于图论中的一个经典问题。在有向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],若图中不存在负权边,则可以用迪杰斯特拉算法找到由顶点V0到其余各点的最短值。
1.该如何表示一个加权图
表示一个图的方法有邻接表、邻接矩阵和关联矩阵三种,在这里我们使用成本邻接矩阵(cost-adjacency-matrix)的方式来表示。图G=(V,E)使用一个|V|*|V|的二维矩阵来表示,其中,
a i j = { ∣ e d g e ( v i , v j ) ∣ 如果存在从vi到vj的边 ∞ 不存在边 a_{ij} = \begin{cases} |edge(v_{i},v_{j})| &\text{如果存在从vi到vj的边} \\ \infty &\text{不存在边} \end{cases} aij={
∣edge(vi,vj)∣∞如果存在从vi到vj的边不存在边
二、迪杰斯特拉算法解释
简单来说,在无向连通简单加权图中,要求出a与z之间的最短通路的长度,迪杰斯特拉算法如下进行:求出从a到第一个顶点的最短通路长度,从a到第二个顶点的最短通路,以此类推,直到求出a到z的最短通路的长度为止。
引入下面的这个例子来加强理解:
例:用迪杰斯特拉算法求图中顶点a到z之间的最短通路的长度。
解:下图显示了求解的步骤。在算法每次迭代中,用红色标记已处理过的顶点,每次迭代都只标明从a到已处理顶点中的最短路径长度。当z顶点被标为红色时,问题其实已经解决,只是这里再往下继续把剩余顶点全部标记完。