【决策树算法】{2} —— C4.5算法

C4.5算法是ID3的改进版,它使用信息增益率而非信息增益来避免对数值多的属性偏好。通过固有值计算,C4.5选择最优划分属性,生成可能是多叉树的决策树,但效率较低且涉及大量运算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是 C4.5C4.5C4.5 算法?

C4.5C4.5C4.5 算法是基于 ID3ID3ID3 算法的改良,C4.5C4.5C4.5 算法不直接使用信息增益,而是使用“信息增益率”来选择最优划分属性。
基于 ID3ID3ID3 算法的优化:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

信息增益率

信息增益准则对可取值数目较多的属性有所偏好,然而这样的决策树显然不具有泛化能力,无法对新样本进行有效预测。而 C4.5C4.5C4.5 算法不直接使用信息增益,而是使用“信息增益率”来选择最优划分属性,假定当前样本集合为 DD

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值