前两天刚刚发布的yolov8简单的复现流程记录
代码下载:GitHub - ultralytics/ultralytics: YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite
环境:直接是用之前的yolov5的环境并安装ultralytics,执行下述指令。
pip install ultralytics
测试,python环境下
进入目录ultyralytics/yolo/v8/detect执行predict.py文件进行一个简单的测试(yolov8n)。测试效果如下
对比yolov5s
一个简单的初步测试记录,待后续深入训练对比。
还未发布论文,更改内容详解:YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷! (qq.com)
----------2023.01.11
yolov5及yolov8理论知识简介
yolov5理论
当然yolov5的相关网络详解在网络上已近有很多很多,他们讲解的也十分详细:如YOLOv5网络详解_yolov5网络结构详解_STATEABC的博客-CSDN博客这篇博客。下述网络结果图来自这篇博客。
同时保研笔记八——YOLOV5项目复习-物联沃-IOTWORD物联网 这篇笔记也有十分详细的讲解。
需要强调的一点是在yolov5-6.0版本将focus删除使用6*6的卷积代替达到同样的效果的同时减少了计算量。
CspLayer的作用是1、增加卷积神经网络的学习能力。2、消除计算瓶颈、降低内存成本。详解:yolox-backbone详解之CSPLayer(含代码_暄染落墨的博客-CSDN博客_csplayer
----2023.01.31
yolov8训练记录
开始执行的训练指令
yolo task=detect mode=train model=yolov8n.pt data=/***.yaml batch=32 epochs=100 imgsz=640 workers=16 device=1
详解:
训练数据集及格式与yolov5一样之外需要复制过来改一下路劲即可。
------2023.03.24