yolov8 复现及测试记录

文章记录了YOLOv8模型的简单复现过程,从GitHub下载代码,在YOLOv5的现有环境中安装并测试。作者比较了YOLOv8与YOLOv5s的差异,并介绍了YOLOv8的改进,包括CSPLayer的作用。还分享了使用自定义数据集训练YOLOv8的指令和训练配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前两天刚刚发布的yolov8简单的复现流程记录

代码下载:GitHub - ultralytics/ultralytics: YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite

环境:直接是用之前的yolov5的环境并安装ultralytics,执行下述指令。

pip install ultralytics

测试,python环境下

进入目录ultyralytics/yolo/v8/detect执行predict.py文件进行一个简单的测试(yolov8n)。测试效果如下

对比yolov5s

 

 一个简单的初步测试记录,待后续深入训练对比。

还未发布论文,更改内容详解:YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷! (qq.com)

                                                                                   ----------2023.01.11

yolov5及yolov8理论知识简介

yolov5理论

当然yolov5的相关网络详解在网络上已近有很多很多,他们讲解的也十分详细:如YOLOv5网络详解_yolov5网络结构详解_STATEABC的博客-CSDN博客这篇博客。下述网络结果图来自这篇博客。

同时保研笔记八——YOLOV5项目复习-物联沃-IOTWORD物联网 这篇笔记也有十分详细的讲解。

 需要强调的一点是在yolov5-6.0版本将focus删除使用6*6的卷积代替达到同样的效果的同时减少了计算量。

CspLayer的作用是1、增加卷积神经网络的学习能力。2、消除计算瓶颈、降低内存成本。详解:yolox-backbone详解之CSPLayer(含代码_暄染落墨的博客-CSDN博客_csplayer  

                                                                                                                   ----2023.01.31

yolov8训练记录

开始执行的训练指令

yolo task=detect mode=train model=yolov8n.pt data=/***.yaml batch=32 epochs=100 imgsz=640 workers=16 device=1

详解:

YOLOv8教程系列:一、使用自定义数据集训练YOLOv8模型(详细版教程,你只看一篇->调参攻略),包含环境搭建/数据准备/模型训练/预测/验证/导出等_Zhijun.li@Studio的博客-CSDN博客

训练数据集及格式与yolov5一样之外需要复制过来改一下路劲即可。

                                                                                                        ------2023.03.24

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值