动态规划:租用游艇问题(求最少租金)

这篇博客介绍了一种利用动态规划算法求解从长江游艇俱乐部的第1站到第n站租用游艇的最低费用问题。通过自底向上的方式,逐步计算并存储相邻站点间的最小租金,从而得出全局最小租金。博客包含问题描述、测试用例、算法解释、代码实现和运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述:

长江游艇俱乐部在长江设置了n个游艇出租站1,2,…n,游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。游艇出租站i到游艇出租站j之间的租金为r(i,j) ,1<=i<j<=n,设计一个算法,计算出从出租站1到出租站n所需要的最少租金

 

二、测试用例:

输入:

3//总站数

5 15//第一站到其他各站的租金

7//第二站到其他各站的租金

输出:

12

 

三、算法描述:

利用动态规划解决问题和分治递归思考的方向不同,利用动态规划考虑问题时,侧重的是自底向上,而且利用子问题之间的关系进一步简化问题的求解过程。

在租用游艇问题求解的过程,对于求解站1到站n之间最少租金,我们并没有一开始就进行求解,而是求解站1到站2、3、4这些较近站之间的最少租金,并把结果存储在数组a之中,在后续求解距离站1更远站点的时候就可以利用数组a中存储好的信息进行求解,以局部最优解逐渐达到整体最优解,并且减少了运算的次数!

 

四、代码:

import java.util.Scanner;

public class demo {
	public static int [][]distance = new int[100][100];//默认站点的数目不超过100个,java自动初始化为零
	public static void main(String[] args) {
		System.out.println("请输入你想计算出在第几个出租站停靠的最少租金:");
		Scanner sc 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值