大模型微调技术 --> Adapter

Adapter: Parameter-Efficient Transfer Learning for NLP

1.摘要

微调大模型在很多情况下,效率低下:每个任务都需要一个全新的模型。

所以,作者提出了使用适配器 adapter 模块前一。adapter 产生一个紧凑且可扩展的模型。他只为每个任务添加少量可训练参数,而且可以添加新的任务,无需重新检查之前的任务。原始网络的参数保持不变,从而实现了高度的参数共享。这里使用 BERT 应用了26 种不同的任务。Adapter 几乎获得了sota 表现

2.介绍

在这里插入图片描述

权衡准确率和可训练任务特定参数的数量,对于 adapter 微调和 finetuning。y 轴以全量微调的性能为基准,x 轴是微调参数量。曲线显示了 GLUE 基准九项任务的第 20、50 和 80 百分位数性能。基于 adapter 的调整在训练参数数量减少两个数量级的情况下取得了与 全量微调 类似的性能。

提出了 compact 和 extensible 下游任务模型的迁移学习策略

紧凑型(compact)模型是只需要为每个任务添加少量参数,就能解决多项任务的模型。

可扩展(extensible)模型可以通过增量训练来解决新任务,而不会遗忘以前的任务。

这两个最普遍的迁移学习策略是 feature-based 迁移和fine-tuning。进一步的,我们提出了一个可替代的迁移方法,基于 adapter module。他可以以少两个数量级的参数量,达到与微调相似的效果。

adapter 是一个被加在预训练网络层之间的一个新的 module。他区别于 feature-based 迁移和fine-tuning 以下面的方式:

考虑一个带有参数w的函数:ϕw(x)\phi_w(x)ϕw(x) .

  1. 基于特征的迁移将ϕw\phi_wϕwχvχ_vχv组合成
<think>嗯,用户想了解如何对Llama-3-8B大模型进行微调。首先,我需要回忆一下微调大型语言模型的一般步骤,并结合Llama-3-8B的具体情况来回答。 首先,微调大模型通常需要准备数据集。用户可能需要收集与目标任务相关的数据,比如对话、问答或者特定领域的文本。数据格式可能需要符合模型输入的格式,比如指令微调的话,数据应该包含指令、输入和期望的输出。比如引用[3]提到的Bunny-Llama-3-8B-V模型,就是基于Llama-3进行多模态微调的,说明数据可能包含图像和文本的结合,但用户的问题是关于微调,可能需要考虑不同的任务类型。 然后是环境配置,需要选择合适的框架,比如Hugging Face的Transformers库,或者使用DeepSpeed、FSDP进行分布式训练。考虑到Llama-3-8B的规模,单卡可能无法训练,需要多卡或者使用参数高效的方法,比如LoRA。引用[3]提到Bunny模型是基于Llama-3-8B的,可能使用了LoRA这类技术来减少显存占用。 接下来是模型加载,可能需要从Hugging Face下载预训练模型,并进行适当的配置,比如加载半精度或者使用QLoRA来量化模型。引用[2]提到Llama-3使用了15万亿tokens训练,所以预训练模型已经很强,微调时不需要太多数据,但要确保数据质量。 然后是训练配置,包括学习率、优化器、批次大小等。由于8B模型参数较多,可能需要较小的学习率,避免过拟合。另外,使用混合精度训练可以节省显存,加快训练速度。引用[3]中的模型在多个benchmark表现好,可能是在训练时进行了多任务学习或者数据增强。 训练过程中需要监控损失和评估指标,使用验证集来调整超参数。可能还需要早停策略,防止过拟合。训练完成后,要保存模型,并可能进行量化或合并适配器,比如LoRA的权重合并到原模型。 最后是部署,将微调后的模型集成到应用中,比如使用FastAPI提供API服务。引用[3]中的Bunny模型作为多模态应用,可能需要特定的部署方式,但用户的问题可能更关注文本生成方面。 在注意事项中,需要强调显存优化,比如梯度检查点、LoRA,以及数据质量的重要性。此外,任务适配可能需要调整模型结构,比如分类任务添加分类头。引用[1]提到未来计划增强模型的中文能力,可能用户的数据如果是中文,需要确保数据足够和相关。 可能用户的实际需求是在特定领域应用Llama-3-8B,比如客服对话或文本生成,所以需要根据具体任务调整微调策略。另外,用户可能关心微调需要多少计算资源,是否需要云服务,或者有没有更高效的方法,比如提示工程代替微调。但根据问题,用户明确想了解微调步骤,所以需要详细说明流程和相关技术。</think>### Llama-3-8B 大模型微调方法分步说明 #### 1. **环境准备与数据收集** - **硬件要求**:建议使用至少1张24GB显存的GPU(如RTX 3090/4090),大规模微调需多卡并行或云服务器(如A100) - **框架选择**:推荐使用Hugging Face Transformers + PEFT库,结合LoRA(Low-Rank Adaptation)进行参数高效微调[^3] - **数据格式**:准备指令-响应对数据(JSON格式),例如: ```json {"instruction": "解释量子力学", "input": "", "output": "量子力学是研究微观粒子..."} ``` #### 2. **模型加载与配置** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained( "meta-llama/Meta-Llama-3-8B", load_in_4bit=True, # 使用QLoRA量化 device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B") ``` #### 3. **适配器配置(LoRA)** ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, # 秩 lora_alpha=32, target_modules=["q_proj", "v_proj"], # 目标注意力层 lora_dropout=0.05, bias="none" ) model = get_peft_model(model, lora_config) model.print_trainable_parameters() # 可训练参数约0.1% ``` #### 4. **训练循环配置** ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=2, gradient_accumulation_steps=4, # 有效批次大小=8 learning_rate=1e-4, warmup_steps=100, num_train_epochs=3, fp16=True, logging_steps=10, optim="adamw_torch" ) ``` #### 5. **启动训练** ```python from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, data_collator=lambda data: { "input_ids": torch.stack([f["input_ids"] for f in data]), "attention_mask": torch.stack([f["attention_mask"] for f in data]), "labels": torch.stack([f["labels"] for f in data]) } ) trainer.train() ``` #### 6. **模型保存与部署** ```python model.save_pretrained("./llama3-8b-lora-adapter") # 合并适配器(可选) merged_model = model.merge_and_unload() merged_model.save_pretrained("./merged_model") ``` ### 关键技术说明 1. **LoRA技术**:通过低秩矩阵分解,仅微调0.1%-1%的参数即可达到全参数微调效果 2. **梯度检查点**:使用`gradient_checkpointing_enable()`减少40%显存占用 3. **指令模板**:需遵循Llama-3的对话格式: ``` <|begin_of_text|><|start_header_id|>user<|end_header_id|> {instruction}<|eot_id|> <|start_header_id|>assistant<|end_header_id|> {response}<|eot_id|> ``` ### 注意事项 - 中文微调建议添加20%以上中文数据(如Alpaca-zh数据集) - 8B模型全参数微调需要约64GB显存,建议采用参数高效方法 - 使用`trl`库的SFTTrainer可获得更好的指令跟随效果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值