搜集临床日常数据利用python进行心脏病的预测(全代码)

本文介绍如何利用临床数据,如性别、年龄、血压等,通过Python实现KNN、逻辑回归、SVM、决策树、随机森林、XGBoost和神经网络等机器学习算法,预测心脏病。详细展示了数据预处理、模型训练、评估和优化的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

各位朋友大家好,数据科学对于临床医生来讲是仅次于手术刀,听诊器的工作利器,希望大家都能掌握一些基本的数据科学知识,利用临床上随处可见的数据就能做一个很好的机器学习的项目。我们这次利用KNN, logistic回归,SVM,决策树,随机森林,xgboost和神经网络,给大家做临床数据机器学习的项目。

这些患者的性别,年龄,舒张压,收缩压等等在临床上随处可见,非常适合做数据科学研究。

import pandas as pd
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.metrics import accuracy_score
import os
os.chdir(r"E:\pythoncode2021\heart")
df = pd.read_csv('heart.csv')
#跑一个可视化
sns.countplot(df['target'])
#确定自变量和因变量,注意做模型一般场景都是用整理好的数据的array格式做
x= df.iloc[:,0:13].values 
y= df['target'].values  
#划分数据集
from sklearn.model_selection import train_test_split  
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞时过

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值