定义:
yyy modmodmod x=x−y[xy]x=x-y[\frac{x}{y}]x=x−y[yx], y≠0y \neq 0y=0
xxx modmodmod yyy 的值介于 000 和 yyy 之间:
000 ≥\ge≥ yyy modmodmod xxx >>> yyy ,y<0y<0y<0
000 ≤\le≤ yyy modmodmod xxx <<< yyy ,y>0y>0y>0
xxx modmodmod 0=x0= x0=x ,y=0y=0y=0
模(Mod)在一些场合,可用符号%\%%表示,它是一个二元运算,例如:
A. 结合律
((a+b)%p+c)%p=(a+(b+c)%p)%p((a+b)\%p+c)\%p=(a+(b+c)\%p)\%p((a+b)%p+c)%p=(a+(b+c)%p)%p
((a∗b)%p∗c)%p=(a∗(b∗c)%p)%p((a*b)\%p * c)\%p= (a * (b*c)\%p)\%p((a∗b)%p∗c)%p=(a∗(b∗c)%p)%p
B. 交换律
(a+b)%p=(b+a)%p(a+b)\%p=(b+a)\%p(a+b)%p=(b+a)%p
(a∗b)%p=(b∗a)%p(a*b)\%p=(b*a)\%p(a∗b)%p=(b∗a)%p
C. 分配率
(a+b)%p=(a%p+b%p)%p(a+b)\%p=(a\%p+b\%p)\%p(a+b)%p=(a%p+b%p)%p
((a+b)%p∗c)%p=((a∗c)%p+(b∗c)%p)%p((a+b)\%p*c)\%p = ( (a*c)\%p + (b*c)\%p )\%p((a+b)%p∗c)%p=((a∗c)%p+(b∗c)%p)%p
D. 基本四则运算
(a+b)%p=(a%p+b%p)%p(a+b)\%p=(a\%p+b\%p)\%p(a+b)%p=(a%p+b%p)%p
(a−b)%p=(a%p−b%p)%p(a-b)\%p=(a\%p-b\%p)\%p(a−b)%p=(a%p−b%p)%p
(a∗b)%p=(a%p∗b%p)%p(a*b)\%p=(a\%p * b\%p)\%p(a∗b)%p=(a%p∗b%p)%p
ab%p=((a%p)b%p)a^b\%p=((a\%p)^b\%p)ab%p=((a%p)b%p)
(∑1nx)%p=(∑1nx%p)%p(\sum_1^n x)\%p=(\sum_1^n x\%p)\%p(∑1nx)%p=(∑1nx%p)%p
………
注:[xy][\frac{x}{y}][yx]表示xy\frac{x}{y}yx的结果向下取整,,over∼over\simover∼