收集训练数据集

收集数据集

采集数据集(最好在不同环境、不同天气、不同时间段)一千张以上效果比较好

YYOLOV标签(样本)

用labelImg

注:需要将标签转换成yolov5的数据格式
数据格式:label_index,cx, cy,w,h
- label_index :为标签名称在标签数组中的索引,下标从 0 开始
- cx:标记框中心点的 x 坐标,数值是原始中心点 x 坐标除以图宽后的结果
- cy:标记框中心点的 y 坐标,数值是原始中心点 y 坐标除以 图高 后的结果
- w:标记框的 宽,数值为 原始标记框的 宽 除以 图宽 后的结果
- h:标记框的 高,数值为 原始标记框的 高 除以 图高 后的结果

0 0.898698 0.284259 0.018229 0.081481

[外链图片转存中…(img-hdtgAlj7-1717126642238)]

3.自定义的数据集
dataSet
|
|–images(原图片)
| xxx01.jpg
| xxx02.jpg
|–lables(标签)
| xxx01.txt
| xxx02.txt
|–data.yaml
| 参考:voc.yaml

训练

python train.py --data dataSet/data.yaml --cfg models/yolov5s_voc.yaml --weights weights/yolov5s.pt --batch-size 4 --epochs 100
训练参数:

train.py
–weight: 指的是训练好的网络模型,用来初始化权重
–cfg: 指的是网络结构
–data: 训练的数据路径
–hyp: 训练网络的一些超参数设置
–epochs: 训练迭代次数
–batch-size: 每次喂给神经网路的图片数目
–imgsz: 训练图片尺寸
–rect: 是否采用矩形训练
–resume:指定你之前训练的网络模型,想继续训练这个模型
–nosave:只保留最终网络模型
–noval:是否只在最后一次测试网络模型
–noautoanchor:是否采用锚点
–evolve:是否寻找最优参数
–bucket:(无效参数)
–cache:是否对图片进行缓存,加快训练
–image-weights:测试过程中,图像的那些测试地方不太好,对这些不太好的地方加权重
–device:训练网络的设备CPU还是gpu
–multi-scale:图片尺度变换
–single-cls:训练数据集是单类还是多类别
–adam:是否采用adam
–sync-bn:分布式训练
–workers:多线程训练
–project:训练结果保存路径
–name:训练结果保存文件名
–exist-ok:覆盖掉上一次的结果,不新建训练结果文件
–quad:在dataloder时采用什么样的方式读取我们的数据
–linear-lr:按照线性的方式去调整学习率
–label-smoothing:对标签平滑,防止过拟合
–patience:暂无
–freeze:冻结哪些层,不去更新训练这几层的参数
–save-period:训练多少次保存一次网络模型
–local_rank:分布式训练

测试

python detect,py --source ./inference/images/ --weights weights/yolov5s.pt --conf 0.4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@陈一言

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值