反射式光耦-码盘系统信号占空比数学建模与分析

本文针对反射式光耦-码盘系统的信号占空比特性展开数学建模与误差分析。研究构建了包含码盘几何模型、光耦非线性响应及信号处理电路的完整物理模型,其中码盘由明暗交替扇区构成,实际制造误差通过角度偏差 Δ θ i Δθ_i Δθi描述,光耦输出电压与反射率及入射角相关,并受比较器迟滞效应调制。通过推导单个扇区上升/下降时间与有效电平时间的数学关系,建立了占空比表达式,揭示其偏差来源于制造误差( Δ θ i Δθ_i Δθi导致高低电平不对称)、光耦响应非线性(上升/下降时间差 Δ D r e s p o n s e ΔD_{response} ΔDresponse)及安装偏心( ε ε ε引起的反射率周期调制)。综合误差模型表明,占空比偏差由三项误差分量叠加形成。蒙特卡洛仿真验证了模型有效性,结果显示标准差 σ D ≈ 1.2 σ_D≈1.2% σD1.2。进一步提出硬件差分补偿与软件FFT重构的优化策略,通过控制码盘加工精度( Δ θ i < 0.05 ° Δθ_i<0.05° Δθi<0.05°)、缩短光耦响应时间( τ < 5 μ s τ<5μs τ<5μs)及限制偏心量( e < 0.01 r e<0.01r e<0.01r),可将偏差抑制至 0.5% \text{0.5\%} 0.5%以内。该研究为光电编码器设计提供了量化分析框架与误差抑制方法。

1. 系统物理模型构建

1.1 码盘几何模型

  • 理想码盘:由 N N N个明(反射率 R high R_{\text{high}} Rhigh)暗(反射率 R low R_{\text{low}} Rlow)交替的扇形区域构成,每个扇区理论角度为 θ 0 = 2 π 2 N = π N \displaystyle \theta_0 =\frac{2\pi }{2N}=\frac{\pi }{N} θ0=2N2π=Nπ
  • 实际码盘:引入制造误差 Δ θ i \Delta\theta_i Δθi,其中 Δ θ i \Delta\theta_i Δθi服从独立同分布(IID),第 i i i个扇区实际角度为 θ i = θ 0 + Δ θ i \theta_i = \theta_0 + \Delta\theta_i θi=θ0+Δθi,满足期望值 E [ Δ θ i ] = ∑ i = 1 2 N Δ θ i = 0 \displaystyle \mathbb{E}[\Delta\theta_i]=\sum_{i=1}^{2N} \Delta\theta_i = 0 E[Δθi]=i=12NΔθi=0(明暗区域总数为 2 N 2N 2N)。

1.2 光耦响应模型

  • 发射光强 I emit I_{\text{emit}} Iemit恒定,接收光强与反射率 R R R及入射角 ϕ \phi ϕ余弦成正比。接收光强 I received ∝ R ⋅ I emit ⋅ cos ⁡ ϕ I_{\text{received}} \propto R \cdot I_{\text{emit}} \cdot \cos\phi IreceivedRIemitcosϕ,其中 ϕ \phi ϕ为入射角偏差,假设 ϕ ∼ N ( 0 , σ ϕ 2 ) \phi \sim \mathcal{N}(0, \sigma_\phi^2) ϕN(0,σϕ2)
  • 输出电压 V out = V DD ⋅ I received I sat \displaystyle V_{\text{out}} = V_{\text{DD}} \cdot \frac{I_{\text{received}}}{I_{\text{sat}}} Vout=VDDIsatIreceived,其中, V DD V_{\text{DD}} VDD为电路的直流电源电压; I sat I_{\text{sat}} I
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值