你好,我是 ✨三桥君✨ 助你迈向AGI时代!
📌本文介绍📌 >>
一、引言
在人工智能领域,单一的语言模型正在逐步进化为能够感知世界、协作行动的智能体。这一进化不仅依赖于算法的优化,更依赖于一系列关键技术的突破与应用。
那么,在人工智能从单一语言模型向智能体进化的过程中,如何通过四项关键技术(MCP、A2A、ANP与函数调用)实现AI的感知、协作与去中心化?
本文三桥君将深入解析这四项技术的定义、工作原理、应用场景及其重要性,希望对你有所启发。。
二、MCP:模型上下文协议
1. 定义与背景
MCP(Model Context Protocol)是一种连接AI与外部数据源的协议。它的推出背景源于AI在处理复杂任务时,需要实时获取外部数据以支持决策。MCP的作用在于为AI提供了一个标准化的接口,使其能够与外部系统进行高效的数据交换。
2. 工作原理
MCP基于客户端 - 服务器架构,通过HTTP POST请求与HTTP SSE响应实现数据的实时传输。具体来说,AI作为客户端向服务器发送请求,服务器则通过SSE(Server - Sent Events)将数据流式传输给AI,从而实现数据的实时更新。
3. 应用场景
MCP在多个领域有着广泛的应用。比如,在金融领域,MCP可以帮助金融分析师的AI助手实时获取市场数据,支持投资决策;在项目管理中,MCP可以实现项目进度的自动化跟踪与调整;在企业定制化解决方案中,MCP可以根据企业的特定需求,提供个性化的AI服务。
4. 重要性
MCP的推出不仅得到了社区的支持,还在多个行业中得到了广泛应用。其安全性与标准化设计,确保了AI与外部系统之间的数据交换既高效又安全。
感兴趣MCP更多内容,可以在这个专栏查阅:《MCP落地方法论》
三、A2A:智能体到智能体协议
1. 定义与背景
A2A(Agent - to - Agent Protocol)是一种标准化智能体间通信的协议。随着AI智能体的增多,智能体之间的通信问题日益突出。A2A的作用在于为智能体提供了一个标准化的通信框架,使其能够高效地进行协作。
2. 工作原理
A2A基于HTTP和JSON标准,通过能力发现、任务协调与上下文共享实现智能体间的通信。具体来说,智能体通过HTTP协议发送JSON格式的消息,进行能力的发现与任务的协调,从而实现高效的协作。
3. 应用场景
A2A在多个场景中有着广泛的应用。比如,在跨平台协作中,A2A可以实现销售与库存智能体之间的数据共享与任务协调;在多模态体验中,A2A可以帮助虚拟助手与用户进行更自然的交互;在复杂任务处理中,A2A可以支持招聘与面试流程的自动化。
4. 重要性
A2A的推出解决了智能体间通信的“乱码”问题,提高了通信的效率与安全性。其易用性设计,使得智能体间的协作变得更加简单与高效。
四、ANP:智能体网络协议
1. 定义与背景
ANP(Agent Network Protocol)是一种去中心化智能体通信的协议。随着AI智能体的增多,传统的中心化通信模式逐渐暴露出其局限性。ANP的作用在于为智能体提供了一个去中心化的通信框架,使其能够更高效地进行协作。
2. 工作原理
ANP基于点对点(P2P)架构,通过W3C DID标准与JSON - LD格式实现智能体间的去中心化通信。具体来说,智能体通过P2P网络直接进行通信,无需经过中心化的服务器,从而实现更高效的数据交换。
3. 应用场景
ANP在多个领域有着广泛的应用。比如,在分布式网络中,ANP可以实现智能交通系统的实时数据交换与任务协调;在自动协作中,ANP可以支持供应链管理的自动化;在边缘计算中,ANP可以帮助偏远地区实现高效的通信。
4. 重要性
ANP的推出不仅实现了智能体间的去中心化通信,还提高了通信的安全性。其打破数据孤岛的设计,使得智能体间的协作变得更加高效与灵活。
看这张图有没有更明白呢?
五、函数调用:AI的功能扩展
1. 定义与背景
函数调用是一种扩展AI功能的机制。随着AI应用场景的增多,单一的语言模型逐渐无法满足复杂任务的需求。函数调用的作用在于为AI提供了一个标准化的接口,使其能够调用外部函数以扩展其功能。
2. 工作原理
函数调用通过用户输入与API调用实现功能的扩展。具体来说,AI根据用户输入生成API调用请求,外部函数则根据请求执行相应的操作,并将结果返回给AI,从而实现功能的扩展。
3. 应用场景
函数调用在多个场景中有着广泛的应用。比如,在实时信息获取中,函数调用可以帮助AI查询天气、股票等实时信息;在任务自动化中,函数调用可以实现库存查询、订单处理等任务的自动化;在智能交互中,函数调用可以支持订票、支付等复杂操作的自动化。
4. 重要性
函数调用的推出突破了AI训练数据的局限,扩展了AI的功能与应用场景。其高效性与灵活性设计,使得AI能够更好地应对复杂任务。
5.在AI智能体中的“函数调用”有什么不同??
在AI智能体(如大语言模型驱动的智能系统)中,函数调用是指AI通过结构化指令调用外部工具、API、服务或代码,以完成自身能力范围之外的任务(如获取实时数据、执行计算、操作设备等)的机制。
核心逻辑:AI的“能力扩展接口”
大语言模型(LLM)本身的核心能力是生成文本和理解语义,但缺乏实时数据获取、复杂计算、物理世界交互等能力。函数调用本质上是AI与外部系统“对话”的桥梁——AI通过生成符合规则的指令,让外部工具执行具体操作,再将结果返回给AI,最终由AI整理成自然语言回答用户。
与传统编程函数调用的区别
传统编程函数调用 | AI智能体函数调用 |
---|---|
由程序员预先写死调用逻辑(何时调用、调用哪个、传什么参数) | 由AI根据用户输入自主判断是否需要调用、调用哪个函数、传什么参数(更具“自主性”) |
调用的是程序内部定义的代码块 | 调用的是外部工具、API、数据库等(扩展AI的“外部能力”) |
典型流程(以“查天气”为例)
- 用户提问:“北京今天的天气怎么样?” (假设今天的日期是2025年8月4日)
- AI判断:自身知识截止到2024年10月,无法获取实时天气,需要调用外部天气API。
- 生成函数调用指令:AI按照约定格式(如JSON)生成调用指令,比如:
{ "name": "get_weather", // 要调用的函数名(如天气API接口) "parameters": {"city": "北京", "date": "2025-08-04"} // 传递的参数 }
- 外部工具执行:系统解析AI生成的指令,调用对应的天气API,获取北京当天的天气数据(如“晴,25℃”)。
- 结果返回与处理:工具将结果返回给AI,AI将数据整理成自然语言:“北京今天晴,气温25℃,适合户外活动。”
关键作用
- 突破AI自身局限:弥补LLM缺乏实时数据、计算能力、物理交互的短板(比如:查股票实时价格、调用计算器算复杂公式、控制智能家居)。
- 实现“闭环任务”:让AI从“只能聊天”升级为“能做事”(如自动订机票、生成数据分析报告、控制机器人)。
格式要求
为了让外部系统能准确解析AI的指令,函数调用需要严格的结构化格式(通常由开发者预先定义),比如:
- 用特定标记包裹(如
[工具调用开始]
和[工具调用结束]
); - 参数需明确、无歧义(避免自然语言的模糊性,确保工具能正确执行)。
常见应用场景
- 实时数据获取:调用新闻API查最新资讯、调用股票API查实时股价;
- 复杂计算:调用计算器API算“123456789×987654321”;
- 物理世界交互:调用智能家居API控制灯光开关、调用机器人API让机械臂抓取物体;
- 数据库操作:调用SQL接口查询“近30天的用户注册量”。
小结
AI智能体的函数调用是 “AI能力的延伸手臂”——通过让AI自主决定何时/如何调用外部工具,使智能体从“文本生成器”升级为能处理实际任务的“行动者”,是构建实用AI系统(如智能助手、自动化机器人)的核心机制。
六、对比分析
四项关键技术(MCP、A2A、ANP与函数调用)在AI智能体的进化过程中扮演着不同的角色,它们各自解决了不同层面的问题,共同推动了AI从单一语言模型向智能体的转变。以下是对这四项技术的详细对比分析:
1. MCP:基础连接器,专注AI与外部系统的“握手”
- 核心作用:MCP(Model Context Protocol)是AI与外部系统之间的桥梁,专注于实现AI与外部数据源的高效连接。
- 技术特点:基于客户端 - 服务器架构,通过HTTP POST请求与HTTP SSE响应实现实时数据传输。
- 应用场景:在需要AI与外部系统实时交互的场景中,如金融分析、项目管理、企业定制化解决方案等。
- 重要性:MCP解决了AI与外部系统的“握手”问题,确保AI能够实时获取外部数据,支持更复杂的决策与任务。
2. A2A:协作大师,擅长多智能体间的“对话”
- 核心作用:A2A(Agent - to - Agent Protocol)是智能体间通信的标准化框架,专注于实现多智能体之间的高效协作。
- 技术特点:基于HTTP和JSON标准,通过能力发现、任务协调与上下文共享实现智能体间的通信。
- 应用场景:在需要多智能体协作的场景中,如跨平台协作、多模态体验、复杂任务处理等。
- 重要性:A2A解决了智能体间通信的“乱码”问题,确保智能体能够高效地进行协作,提升整体系统的效率与灵活性。
3. ANP:未来先锋,打造去中心化的“智能体社会”
- 核心作用:ANP(Agent Network Protocol)是智能体间去中心化通信的框架,专注于实现智能体间的点对点通信。
- 技术特点:基于点对点(P2P)架构,通过W3C DID标准与JSON - LD格式实现去中心化通信。
- 应用场景:在需要去中心化通信的场景中,如分布式网络、自动协作、边缘计算等。
- 重要性:ANP打破了传统中心化通信模式的局限性,实现了智能体间的去中心化协作,提升了系统的安全性与扩展性。
4. 函数调用:AI的“执行力”,让想法落地
- 核心作用:函数调用是AI功能扩展的机制,专注于实现AI与外部函数的交互,扩展AI的能力。
- 技术特点:通过用户输入与API调用实现功能的扩展,支持结构化输出与反馈。
- 应用场景:在需要AI执行复杂任务的场景中,如实时信息查询、任务自动化、智能交互等。
- 重要性:函数调用突破了AI训练数据的局限,扩展了AI的功能与应用场景,确保AI能够更好地应对复杂任务。
5. 对比
技术 | 专注点 | 在智能体进化中的角色 |
---|---|---|
MCP | AI与外部系统的连接 | 智能体进化的基础 |
A2A | 智能体间的协作 | 智能体高效运行的关键 |
ANP | 去中心化通信 | 智能体未来发展的方向 |
函数调用 | 功能扩展 | 智能体执行复杂任务的核心 |
通过这四项技术的协同作用,AI实现了从单一语言模型向智能体的全面进化,推动了AI技术的广泛应用与深度发展。
七、总结
三桥君认为,通过MCP、A2A、ANP与函数调用四项关键技术,AI实现了感知、协作与去中心化,推动了智能体的进化。这些技术不仅解决了AI与外部系统的连接问题,还实现了智能体间的标准化通信与去中心化协作,扩展了AI的功能与应用场景。
对于产品经理而言,理解并应用这些技术,将有助于设计更具竞争力的AI产品。以下是具体的参考建议:
建议内容 | 具体建议 | 意义 |
---|---|---|
深入理解技术原理 | 产品经理应深入理解MCP、A2A、ANP与函数调用的工作原理,明确它们在AI系统中的具体作用与价值。 | 只有掌握了技术原理,才能更好地规划产品功能,确保技术方案与产品需求相匹配。 |
注重用户体验 | 在设计AI产品时,产品经理应注重用户体验,确保AI与外部系统的交互、智能体间的协作以及功能扩展的操作对用户友好。 | 良好的用户体验是产品成功的关键,尤其是在复杂技术应用中,简化用户操作流程尤为重要。 |
关注数据安全与隐私 | 在应用MCP、A2A与ANP时,产品经理应特别关注数据安全与隐私保护,确保通信与协作过程中的数据安全。 | 数据安全是用户信任的基础,尤其是在涉及敏感信息的场景中,安全设计不可或缺。 |
灵活应用函数调用 | 产品经理应灵活应用函数调用机制,扩展AI的功能,满足多样化的用户需求。 | 函数调用是AI功能扩展的核心,合理利用这一技术,可以显著提升产品的竞争力。 |
推动去中心化协作 | 在需要多智能体协作的场景中,产品经理应积极推动去中心化协作模式,利用ANP技术提升系统的灵活性与安全性。 | 去中心化协作是未来智能体发展的趋势,提前布局将为产品带来长期优势。 |
持续迭代与优化 | 产品经理应持续跟踪技术发展,及时迭代与优化产品功能,确保产品始终处于技术前沿。 | AI技术发展迅速,只有不断迭代,才能保持产品的竞争力。 |
通过以上建议,产品经理可以更好地利用MCP、A2A、ANP与函数调用四项关键技术,设计出更高效、更安全、更智能的AI产品,推动智能体的进化与广泛应用。三桥君希望以上总结与建议能够为你提供有价值的参考。
⭐更多文章⭐ >>
-
人工智能100个AI术语
访问三桥君博客:https://blog.csdn.net/weixin_46218781?
![]() | 欢迎关注✨ 三桥君 ✨获取更多AI产品经理与AI技术的知识、经验,帮你入门AI领域,希望你为行业做出更大贡献。三桥君认为,人人皆可成为AI专家👏👏👏读到这里,若文章对你有所启发,欢迎点赞、收藏、转发、赞赏👍👍👍 |