66【多模态】ALBEF

ALBEF 是一种新的多模态预训练模型,通过图文对比学习(ITC)对齐单一模态特征,图文匹配(ITM)和掩码语言建模(MLM)学习多模态特征,同时采用动量蒸馏(MoD)缓解噪声数据影响。模型基于 ViT 和 BERT,通过对比和匹配任务以及动量编码器和队列机制提升跨模态学习效果。

ALBEF

论文信息

标题:Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

作者:Junnan Li(Salesforce Research)

期刊:NeurIPS 2021

发布时间与更新时间:2021.07.16 2021.10.07

主题:多模态、预训练、图像、文本、对比学习、知识蒸馏、动量模型

arXiv:https://arxiv.org/abs/2107.07651

代码:salesforce/ALBEF: Code for ALBEF: a new vision-language pre-training method (github.com)

概述

作者认为之前的模型存在三个问题:① 使用预训练好的目标检测器(object detector)对图像目标识别的结果作为图像的单模态特征,与来自文本编码器的文本特征的对齐程度很低,因为目标检测器没有与文本特征一同进行端到端的训练,用于捕获两个模态交互信息的模块无法很好地将来自两个独立语义空间的特征进行融合。另外,推理阶段的目标检测器需要接收高分辨率的图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值