MMSeg 使用

本文介绍了MMSeg的安装、推理以及可视化步骤。通过命令行或Python API进行推理,并展示了自定义数据集的处理方法,包括数据集类的修改和配置文件的调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MMSeg 使用

MMSeg

在这里插入图片描述

MMSeg 安装

参考官方安装
在基于MMDet安装后,运行类似安装代码

git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -e .

验证安装
如果下载完成,且当前目录下多了两pspnet*的文件则安装成功

mim download mmsegmentation --config pspnet_r50-d8_512x1024_40k_cityscapes --dest .

MMSet 推理

命令行推理

在mmsegmentation目录下运行

!python demo/image_demo.py \
		demo/demo.png \
		configs/*  \  # 配置文件路径
		https://download*  \  # 配置文件的预训练模型pth路径
		--out-file output.jpg \
		--device cuda:0 \
		--opacity 0.5  # mask可视化结果的透明度
python api 推理

最后分割结果就会保存在result这个变量中
result:

  • pred_sem_seg: shape(1, H, W),值为 0 ~ classes,可以使用matplotlib绘图
  • seg_logits: shape(classes, H, W),值为概率
from mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
from mmseg.core.evaluation import get_palette

import matplotlib.pyplot as plt

config_file = 'config.py'
checkpoint_file = 'config.pth'
model = init_segmentor(config_file, checkpoint_file, device='cuda:0')

img = 'test.png'
result = inference_segmentor(model, img)

可视化

opactiy:透明度,值越小越接近原图

vision_img = show_result_pyplot(model, img, result, opacity=.5, out_file="output.jpg")
plt.imshow(vision_img[..., ::-1])

自定义数据集

images: 原图片(jpg)
labels: mask图(png),标注文件。内部的值为 0 ~ classes,所以肉眼不可见,可以用matploblib归一化后显示

自定义数据集类

from mmseg.registry import DATASETS
from mmseg.datasets import BaseSegDataset

@DATASETS.register_module()
class CoutomNameDataset(BaseSegDataset):
	# classes:所有类名
	# palette: 调色板
	METAINFO = dict(classes=classes, palette=palette)
	def __init__(self, **kwargs):
		super().__init__(img_suffix=".jpg", seg_map_suffix=".png", **kwargs)

随后修改配置文件,类似于MMDet过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值